Baseline data for monitoring geomorphological effects of glacier lake outburst flood: A very high-resolution image and GIS datasets of the distal part of the Zackenberg River, northeast Greenland

A. Tomczyk, M. Ewertowski
{"title":"Baseline data for monitoring geomorphological effects of glacier lake outburst flood: A very high-resolution image and GIS datasets of the distal part of the Zackenberg River, northeast Greenland","authors":"A. Tomczyk, M. Ewertowski","doi":"10.5194/ESSD-2021-48","DOIUrl":null,"url":null,"abstract":"Abstract. The Arctic regions experience intense transformations, such that efficient methods are needed to monitor and understand Arcticlandscape changes in response to climate warming and low-frequency high-magnitude events. One example of such events,capable of causing serious landscape changes, is glacier lake outburst floods. On 6 August 2017, a flood event related to glacial lake outburst affected the Zackenberg River (NE Greenland). Here, we provided a very high-resolution dataset representingunique time-series of data captured immediately before (5 August 2017), during (6 August 2017), and after (8 August 2017)the flood. Our dataset covers a 2.1-km-long distal section of the Zackenberg River. The available files comprise: (1)unprocessed images captured using an unmanned aerial vehicle (UAV): https://doi.org/10.5281/zenodo.4495282 (Tomczykand Ewertowski, 2021a); and (2) results of structure-from-motion (SfM) processing (orthomosaics, digital elevation models, and hillshade models in a raster format), uncertainty assessments (precision maps) and effects of geomorphological mappingin vector formats: https://doi.org/10.5281/zenodo.4498296 (Tomczyk and Ewertowski, 2021b). Potential applications of thepresented dataset include: (1) assessment and quantification of landscape changes as an immediate result of glacier lakeoutburst flood; (2) long-term monitoring of high-Arctic river valley development (in conjunction with other datasets); (3)establishing a baseline for quantification of geomorphological impacts of future glacier lake outburst floods; (4) assessment of geohazards related to bank erosion and debris flow development (hazards for research station infrastructure – station buildingsand bridge); (5) monitoring of permafrost degradation; and (6) modelling flood impacts on river ecosystem, transport capacity,and channel stability.  \n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ESSD-2021-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. The Arctic regions experience intense transformations, such that efficient methods are needed to monitor and understand Arcticlandscape changes in response to climate warming and low-frequency high-magnitude events. One example of such events,capable of causing serious landscape changes, is glacier lake outburst floods. On 6 August 2017, a flood event related to glacial lake outburst affected the Zackenberg River (NE Greenland). Here, we provided a very high-resolution dataset representingunique time-series of data captured immediately before (5 August 2017), during (6 August 2017), and after (8 August 2017)the flood. Our dataset covers a 2.1-km-long distal section of the Zackenberg River. The available files comprise: (1)unprocessed images captured using an unmanned aerial vehicle (UAV): https://doi.org/10.5281/zenodo.4495282 (Tomczykand Ewertowski, 2021a); and (2) results of structure-from-motion (SfM) processing (orthomosaics, digital elevation models, and hillshade models in a raster format), uncertainty assessments (precision maps) and effects of geomorphological mappingin vector formats: https://doi.org/10.5281/zenodo.4498296 (Tomczyk and Ewertowski, 2021b). Potential applications of thepresented dataset include: (1) assessment and quantification of landscape changes as an immediate result of glacier lakeoutburst flood; (2) long-term monitoring of high-Arctic river valley development (in conjunction with other datasets); (3)establishing a baseline for quantification of geomorphological impacts of future glacier lake outburst floods; (4) assessment of geohazards related to bank erosion and debris flow development (hazards for research station infrastructure – station buildingsand bridge); (5) monitoring of permafrost degradation; and (6) modelling flood impacts on river ecosystem, transport capacity,and channel stability.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冰川湖溃决洪水对地貌影响监测的基线数据:格陵兰东北部扎肯伯格河末端的高分辨率图像和GIS数据集
摘要北极地区正在经历剧烈的变化,因此需要有效的方法来监测和了解北极景观变化对气候变暖和低频高强度事件的响应。能够引起严重景观变化的此类事件的一个例子是冰川湖溃决洪水。2017年8月6日,与冰湖溃决有关的洪水事件影响了格陵兰东北部的扎肯伯格河。在这里,我们提供了一个非常高分辨率的数据集,代表了在洪水之前(2017年8月5日),期间(2017年8月6日)和之后(2017年8月8日)捕获的独特时间序列数据。我们的数据集覆盖了扎肯伯格河2.1公里长的远端部分。可用的文件包括:(1)使用无人机(UAV)捕获的未处理图像:https://doi.org/10.5281/zenodo.4495282 (Tomczykand Ewertowski, 2021a);(2)结构-运动(SfM)处理结果(光栅格式的正形图、数字高程模型和山影模型)、不确定性评估(精确地图)和矢量格式的地貌制图效果:https://doi.org/10.5281/zenodo.4498296 (Tomczyk和Ewertowski, 2021b)。该数据集的潜在应用包括:(1)评价和量化冰川湖溃决洪水直接导致的景观变化;(2)高北极河谷发展的长期监测(与其他数据集结合);(3)建立未来冰湖溃决洪水地貌影响量化基线;(4)岸坡侵蚀、泥石流发展相关地质灾害评价(科考站基础设施-科考站建筑物、桥梁灾害);(5)冻土退化监测;(6)模拟洪水对河流生态系统、运输能力和河道稳定性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1