DREDGE

Andrew McCrabb, Eric Winsor, V. Bertacco
{"title":"DREDGE","authors":"Andrew McCrabb, Eric Winsor, V. Bertacco","doi":"10.1145/3316781.3317804","DOIUrl":null,"url":null,"abstract":"Graph-based algorithms have gained significant interest in several application domains. Solutions addressing the computational efficiency of such algorithms have mostly relied on many-core architectures. Cleverly laying out input graphs in storage, by placing adjacent vertices in a same storage unit (memory bank or cache unit), enables fast access during graph traversal. Dynamic graphs, however, must be continuously repartitioned to leverage this benefit. Yet software repartitioning solutions rely on costly, cross-vault communication to query and optimize the graph layout between algorithm iterations. In this work, we propose DREDGE, a novel hardware solution to provide heuristic repartitioning optimizations in the background without extra communication. Our evaluation indicates that we achieve a $1.9 x$ speedup, on average, over several graph algorithms and datasets, executing on a 24x24-core architecture, when compared against a baseline solution that does not repartition the dynamic graph. We estimated that DREDGE incurs only 1.5% area and 2.1% power overheads over an ARM A5 processor core. CCS CONCEPTS • Hardware $\\rightarrow$ Hardware accelerators; Application specific processors; • Mathematics of computing $\\rightarrow$ Graph theory;","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Graph-based algorithms have gained significant interest in several application domains. Solutions addressing the computational efficiency of such algorithms have mostly relied on many-core architectures. Cleverly laying out input graphs in storage, by placing adjacent vertices in a same storage unit (memory bank or cache unit), enables fast access during graph traversal. Dynamic graphs, however, must be continuously repartitioned to leverage this benefit. Yet software repartitioning solutions rely on costly, cross-vault communication to query and optimize the graph layout between algorithm iterations. In this work, we propose DREDGE, a novel hardware solution to provide heuristic repartitioning optimizations in the background without extra communication. Our evaluation indicates that we achieve a $1.9 x$ speedup, on average, over several graph algorithms and datasets, executing on a 24x24-core architecture, when compared against a baseline solution that does not repartition the dynamic graph. We estimated that DREDGE incurs only 1.5% area and 2.1% power overheads over an ARM A5 processor core. CCS CONCEPTS • Hardware $\rightarrow$ Hardware accelerators; Application specific processors; • Mathematics of computing $\rightarrow$ Graph theory;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疏浚
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LODESTAR DHOOM Filianore ChipSecure MRLoc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1