A Coarse-to-Fine Approach for Motion Pattern Discovery

Bolun Cai, Zhifeng Luo, Kerui Li
{"title":"A Coarse-to-Fine Approach for Motion Pattern Discovery","authors":"Bolun Cai, Zhifeng Luo, Kerui Li","doi":"10.1109/CyberC.2012.95","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a coarse-to-fine approach to discovery motion patterns. There are two phases in the proposed approach. In the first phase, the proposed median-based GMM achieves coarse clustering. Moreover, the number of clusters can be heuristically found by the proposed algorithm. In the second phase, to refine coarse clustering in the first phase, a Fisher optimal division method is proposed to examine the boundary data points and to detect the change point between motion patterns. The experimental results show that the proposed approach outperforms the existing algorithms.","PeriodicalId":416468,"journal":{"name":"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2012.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a coarse-to-fine approach to discovery motion patterns. There are two phases in the proposed approach. In the first phase, the proposed median-based GMM achieves coarse clustering. Moreover, the number of clusters can be heuristically found by the proposed algorithm. In the second phase, to refine coarse clustering in the first phase, a Fisher optimal division method is proposed to examine the boundary data points and to detect the change point between motion patterns. The experimental results show that the proposed approach outperforms the existing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种由粗到精的运动模式发现方法
在本文中,我们提出了一种从粗到精的方法来发现运动模式。拟议的方法分为两个阶段。在第一阶段,提出的基于中值的GMM实现粗聚类。此外,该算法还可以启发式地找到聚类的数量。在第二阶段,为了改进第一阶段的粗聚类,提出了Fisher最优分割方法来检查边界数据点并检测运动模式之间的变化点。实验结果表明,该方法优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deadline Based Performance Evaluation of Job Scheduling Algorithms The Digital Aggregated Self: A Literature Review An Efficient TCB for a Generic Content Distribution System Testing Health-Care Integrated Systems with Anonymized Test-Data Extracted from Production Systems A Framework for P2P Botnet Detection Using SVM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1