System Call Anomaly Detection Using Multi-HMMs

E. Yolacan, Jennifer G. Dy, D. Kaeli
{"title":"System Call Anomaly Detection Using Multi-HMMs","authors":"E. Yolacan, Jennifer G. Dy, D. Kaeli","doi":"10.1109/SERE-C.2014.19","DOIUrl":null,"url":null,"abstract":"This paper focuses on techniques to detect anomalous behavior in system call sequences. Since profiling complex sequential data is still an open problem in anomaly detection, there is a need to explore new approaches. While previous research has used Hidden Markov Models (HMMs) for anomaly-based intrusion detection, the proposed models tend to increase rapidly in complexity in order to increase the detection rate while reducing the false detections. In this paper, we propose a multi-HMMapproach applied for anomaly detection in clustered system call sequences. We run our experiments using the well-known system call data set provided by the University of New Mexico (UNM). Our process trace clustering approach using HMMs for system call anomaly detection provides accurate results and reduces the complexity required to detect anomalies. In this paper, we show how system call traces processed with our HMM method can provide a path forward to improved intrusion detection techniques.","PeriodicalId":373062,"journal":{"name":"2014 IEEE Eighth International Conference on Software Security and Reliability-Companion","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Software Security and Reliability-Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERE-C.2014.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper focuses on techniques to detect anomalous behavior in system call sequences. Since profiling complex sequential data is still an open problem in anomaly detection, there is a need to explore new approaches. While previous research has used Hidden Markov Models (HMMs) for anomaly-based intrusion detection, the proposed models tend to increase rapidly in complexity in order to increase the detection rate while reducing the false detections. In this paper, we propose a multi-HMMapproach applied for anomaly detection in clustered system call sequences. We run our experiments using the well-known system call data set provided by the University of New Mexico (UNM). Our process trace clustering approach using HMMs for system call anomaly detection provides accurate results and reduces the complexity required to detect anomalies. In this paper, we show how system call traces processed with our HMM method can provide a path forward to improved intrusion detection techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于multi - hmm的系统调用异常检测
本文主要研究系统调用序列中异常行为的检测技术。由于分析复杂序列数据在异常检测中仍然是一个开放的问题,因此需要探索新的方法。虽然以往的研究使用隐马尔可夫模型(hmm)进行基于异常的入侵检测,但为了提高检测率和减少误检测,所提出的模型往往会迅速增加复杂性。本文提出了一种应用于集群系统调用序列异常检测的多hmm方法。我们使用新墨西哥大学(UNM)提供的著名系统调用数据集来运行我们的实验。我们使用hmm进行系统调用异常检测的过程跟踪聚类方法提供了准确的结果,并降低了检测异常所需的复杂性。在本文中,我们展示了如何用HMM方法处理系统调用跟踪,从而为改进入侵检测技术提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diagnosis-Guided Regression Test Refinement CRAXDroid: Automatic Android System Testing by Selective Symbolic Execution Security Analysis of MAC Protocol for Mobile Device Identification Based on PARADIS Protection against Code Obfuscation Attacks Based on Control Dependencies in Android Systems MicroApp: Architecting Web Application for Non-uniform Trustworthiness in Cloud Computing Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1