Data reduction by partial preaggregation

P. Larson
{"title":"Data reduction by partial preaggregation","authors":"P. Larson","doi":"10.1109/ICDE.2002.994787","DOIUrl":null,"url":null,"abstract":"Partial preaggregation is a simple data reduction operator that can be applied to aggregation queries. Whenever we group and aggregate on a column set G, we can preaggregate on any column set that functionally determines G. Preaggregation can be used, for example, to reduce the input size to a join. Regular aggregation reduces the input to one record per group. Partial preaggregation exploits the fact that preaggregation need not be complete-if multiple records happen to be output for a group, they will be combined into the same group by the final aggregation. This paper describes a straightforward hash-based algorithm for partial preaggregation, discusses where it can be applied, and derives a mathematical model for estimating the output size. The effectiveness of the technique and the accuracy of the model are shown on both artificial and real data. It is also shown how to reduce memory requirements by combining partial preaggregation with the input phase of a subsequent join or sort operator. Partial preaggregation has been implemented, in part, in Microsoft SQL Server.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Partial preaggregation is a simple data reduction operator that can be applied to aggregation queries. Whenever we group and aggregate on a column set G, we can preaggregate on any column set that functionally determines G. Preaggregation can be used, for example, to reduce the input size to a join. Regular aggregation reduces the input to one record per group. Partial preaggregation exploits the fact that preaggregation need not be complete-if multiple records happen to be output for a group, they will be combined into the same group by the final aggregation. This paper describes a straightforward hash-based algorithm for partial preaggregation, discusses where it can be applied, and derives a mathematical model for estimating the output size. The effectiveness of the technique and the accuracy of the model are shown on both artificial and real data. It is also shown how to reduce memory requirements by combining partial preaggregation with the input phase of a subsequent join or sort operator. Partial preaggregation has been implemented, in part, in Microsoft SQL Server.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分预聚合的数据约简
部分预聚合是一种简单的数据约简操作符,可应用于聚合查询。当我们对列集G进行分组和聚合时,我们可以对任何在功能上决定G的列集进行预聚合。预聚合可以用于减少连接的输入大小。常规聚合将输入减少到每组一条记录。部分预聚合利用了预聚合不必是完全的这一事实——如果一个组碰巧输出了多条记录,它们将通过最终聚合组合到同一个组中。本文描述了一个直接的基于哈希的部分预聚合算法,讨论了它可以应用的地方,并推导了一个估计输出大小的数学模型。人工数据和实际数据均表明了该方法的有效性和模型的准确性。还展示了如何通过将部分预聚合与后续连接或排序操作符的输入阶段相结合来减少内存需求。部分预聚合已经在Microsoft SQL Server中部分实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out from under the trees [linear file template] Declarative composition and peer-to-peer provisioning of dynamic Web services Multivariate time series prediction via temporal classification Integrating workflow management systems with business-to-business interaction standards YFilter: efficient and scalable filtering of XML documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1