Predicting Total Hydro Carbons Amount of Air Using Artificial Neural Network

S. Sargolzaei, K. Faez, A. Sargolzaei
{"title":"Predicting Total Hydro Carbons Amount of Air Using Artificial Neural Network","authors":"S. Sargolzaei, K. Faez, A. Sargolzaei","doi":"10.1109/ICNC.2007.560","DOIUrl":null,"url":null,"abstract":"In this article, parameters affecting on formation and elimination of hydrocarbons using artificial neural network are considered and a model to predict THC (total hydrocarbon) amount in air using neural network is earned. Also using neural network model and surveying effect of each parameters on THC amount, optimization of offered model is done. The database to get mentioned model consists 1500 samples of current information in two stations of quality control of Tehran city air. Results of using artificial neural network in prediction of THC amount indicate that neural network model is suitable for predicting THC amount. Also to compare improvement of implementing THC prediction model using artificial neural network, a multivariable regression model is used to predict THC amount and its results indicate that MSE is very low when we use artificial neural network.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this article, parameters affecting on formation and elimination of hydrocarbons using artificial neural network are considered and a model to predict THC (total hydrocarbon) amount in air using neural network is earned. Also using neural network model and surveying effect of each parameters on THC amount, optimization of offered model is done. The database to get mentioned model consists 1500 samples of current information in two stations of quality control of Tehran city air. Results of using artificial neural network in prediction of THC amount indicate that neural network model is suitable for predicting THC amount. Also to compare improvement of implementing THC prediction model using artificial neural network, a multivariable regression model is used to predict THC amount and its results indicate that MSE is very low when we use artificial neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络预测空气中总碳氢化合物含量
本文考虑了影响空气中碳氢化合物形成和消除的各种参数,建立了利用神经网络预测空气中碳氢化合物总量的模型。并利用神经网络模型和测量各参数对四氢大麻酚量的影响,对模型进行了优化。该模型的数据库由德黑兰市两个空气质量控制站的1500个当前信息样本组成。人工神经网络在四氢大麻酚用量预测中的应用结果表明,神经网络模型适用于四氢大麻酚用量的预测。为了比较人工神经网络实现THC预测模型的改进,采用多变量回归模型对THC量进行预测,结果表明,人工神经网络实现THC量的MSE很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1