Following the path towards intelligently connected devices for on-line, real-time cardiac arrhythmia detection and classification

J. Gnecchi, E. R. Archundia, A. del Carmen Téllez Anguiano, A. Patiño, Daniel Lorias Espinoza
{"title":"Following the path towards intelligently connected devices for on-line, real-time cardiac arrhythmia detection and classification","authors":"J. Gnecchi, E. R. Archundia, A. del Carmen Téllez Anguiano, A. Patiño, Daniel Lorias Espinoza","doi":"10.1109/ROPEC.2016.7830636","DOIUrl":null,"url":null,"abstract":"Cardiac arrhythmia detection and classification is of outmost importance for early diagnosis to reduce significantly the rates of morbidity and mortality of patients with heart disease. In particular for patients with silent cardiac symptomatology, the advances in wearable sensing technology offer a promising solution for on-line, real-time detection of intermittent tachyarrhythmia events that otherwise may evolve undetected. In this paper the authors examine some of the key issues that outline the path towards integrating various aspects for ECG signal acquisition and analysis with current trends in wearable sensing technology and present recent results towards on-line real-time arrhythmia classification considering the IoMT (Internet of Medical Things) approach.","PeriodicalId":166098,"journal":{"name":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2016.7830636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cardiac arrhythmia detection and classification is of outmost importance for early diagnosis to reduce significantly the rates of morbidity and mortality of patients with heart disease. In particular for patients with silent cardiac symptomatology, the advances in wearable sensing technology offer a promising solution for on-line, real-time detection of intermittent tachyarrhythmia events that otherwise may evolve undetected. In this paper the authors examine some of the key issues that outline the path towards integrating various aspects for ECG signal acquisition and analysis with current trends in wearable sensing technology and present recent results towards on-line real-time arrhythmia classification considering the IoMT (Internet of Medical Things) approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遵循智能连接设备的路径,用于在线,实时心律失常检测和分类
心律失常的检测和分类对于早期诊断至关重要,可以显著降低心脏病患者的发病率和死亡率。特别是对于无症状的心脏患者,可穿戴传感技术的进步为在线、实时检测间歇性心动过速事件提供了一个有前途的解决方案,否则这些事件可能会演变为未被发现的。在本文中,作者研究了一些关键问题,这些问题概述了将ECG信号采集和分析的各个方面与可穿戴传感技术的当前趋势相结合的路径,并介绍了考虑到IoMT(医疗物联网)方法的在线实时心律失常分类的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low complexity approach for controlling a robotic arm using the Emotiv EPOC headset Numerical simulation in 3D of a thermoelectrical system by ohmic heating Braille teaching electronic prototype Model of thrust/Load-Torque in terms of geometric parameters of the blade for design and simulation of small scale propellers used in miniature UAVs Exoskeleton robot modeling and Fuzzy Logic Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1