Identification of Safe Air Quality for Activity Using Long Short-Term Memory

R. Rahmat, Fahrurrozi Lubis, M. Furqan, S. Faza, Farhad Nadi, Nur Intan Raihana Ruhayem
{"title":"Identification of Safe Air Quality for Activity Using Long Short-Term Memory","authors":"R. Rahmat, Fahrurrozi Lubis, M. Furqan, S. Faza, Farhad Nadi, Nur Intan Raihana Ruhayem","doi":"10.1109/ELTICOM57747.2022.10037891","DOIUrl":null,"url":null,"abstract":"Air pollution is one of the problems that is often occurred in the cities with high industrial and transportation levels. Several informations are needed by the community so that they can be use it for people’s health concerns. Air Quality Index is a standard for determining air quality and pollution based on the main parameters, namely: Carbon Dioxide (CO2), Sulfur Dioxide (SO2), Ozone (O3), and Particulate Dust (PM10 and PM2.5). While, for the methods, we suggest Long Short-Term Memory model which have good performance in identifying safe air quality for activities. The model conducts training with a parameter of 100 epoch, learning rate = 0.001, batch size = 32. Testing uses the optimizer, activation function, and the right function to measure air quality with an accuracy of up to 98%. Thus, we adjust LSTM model with Adamax optimizer and Sigmoid activation function is the best parameter to get the highest accuracy.","PeriodicalId":406626,"journal":{"name":"2022 6th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELTICOM57747.2022.10037891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution is one of the problems that is often occurred in the cities with high industrial and transportation levels. Several informations are needed by the community so that they can be use it for people’s health concerns. Air Quality Index is a standard for determining air quality and pollution based on the main parameters, namely: Carbon Dioxide (CO2), Sulfur Dioxide (SO2), Ozone (O3), and Particulate Dust (PM10 and PM2.5). While, for the methods, we suggest Long Short-Term Memory model which have good performance in identifying safe air quality for activities. The model conducts training with a parameter of 100 epoch, learning rate = 0.001, batch size = 32. Testing uses the optimizer, activation function, and the right function to measure air quality with an accuracy of up to 98%. Thus, we adjust LSTM model with Adamax optimizer and Sigmoid activation function is the best parameter to get the highest accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用长短期记忆识别活动的安全空气质量
空气污染是工业和交通水平高的城市经常发生的问题之一。社区需要一些信息,以便他们能够利用这些信息来解决人们的健康问题。空气质量指数是根据主要参数,即二氧化碳(CO2)、二氧化硫(SO2)、臭氧(O3)和颗粒物(PM10和PM2.5),来判断空气质量和污染程度的标准。而对于方法,我们建议采用长短期记忆模型,该模型在识别活动安全空气质量方面具有较好的性能。模型以100 epoch为参数进行训练,学习率= 0.001,批大小= 32。测试使用优化器,激活功能和正确的功能来测量空气质量,准确度高达98%。因此,我们使用Adamax优化器调整LSTM模型,Sigmoid激活函数是获得最高精度的最佳参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation Combination of Case-Based Reasoning and Rule-Based Reasoning for Diagnosis of Herpes Disease Blockchain-based e-Government: Exploring Stakeholders Perspectives and Expectations Impact of Intermittent Renewable Energy Generations Penetration on Harmonics in Microgrid Distribution Networks Realtime Monitoring System Towards Waste Generation Management Machine Learning Technique for Classification of Internet Firewall Data Using RapidMiner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1