Supervised Classification for Analysis and Detection of Potentially Hazardous Asteroid

Vedant Bahel, Pratik Bhongade, Jagrity Sharma, Samiksha Shukla, Mahendra Gaikwad
{"title":"Supervised Classification for Analysis and Detection of Potentially Hazardous Asteroid","authors":"Vedant Bahel, Pratik Bhongade, Jagrity Sharma, Samiksha Shukla, Mahendra Gaikwad","doi":"10.1109/iccica52458.2021.9697222","DOIUrl":null,"url":null,"abstract":"The use of Artificial Intelligence (AI) in solving real- time problems are increasing day by day with the increase in the availability of data and computation power. It is now substantial to use AI-based tools and techniques in space science. Asteroids, rocky objects that orbit around the sun, often produce an array of effects that cause harm to humans and biodiversity on earth. Such effects can cause wind blast, overpressure shock, thermal radiation, cratering, seismic shaking, ejecta deposition, tsunami, and many more. With the availability of data on asteroid parameters and nature, it provides an opportunity to use Machine Learning (ML) to address this problem and reduce the risk. This paper presents a thorough study on the impact of Potentially Hazardous Asteroids (PHAs) and proposes a supervised machine learning method to detect whether an asteroid with specific parameters is hazardous or not. We compare manifold classification algorithms that were implemented on the data. Random forest gave the best performance in terms of accuracy (99.99%) and average F1- score (99.22%).","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The use of Artificial Intelligence (AI) in solving real- time problems are increasing day by day with the increase in the availability of data and computation power. It is now substantial to use AI-based tools and techniques in space science. Asteroids, rocky objects that orbit around the sun, often produce an array of effects that cause harm to humans and biodiversity on earth. Such effects can cause wind blast, overpressure shock, thermal radiation, cratering, seismic shaking, ejecta deposition, tsunami, and many more. With the availability of data on asteroid parameters and nature, it provides an opportunity to use Machine Learning (ML) to address this problem and reduce the risk. This paper presents a thorough study on the impact of Potentially Hazardous Asteroids (PHAs) and proposes a supervised machine learning method to detect whether an asteroid with specific parameters is hazardous or not. We compare manifold classification algorithms that were implemented on the data. Random forest gave the best performance in terms of accuracy (99.99%) and average F1- score (99.22%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潜在危险小行星的监督分类分析与检测
随着数据可用性和计算能力的提高,人工智能(AI)在解决实时问题方面的应用日益增多。现在,在空间科学中使用基于人工智能的工具和技术是实质性的。小行星是围绕太阳运行的岩石物体,经常会产生一系列影响,对人类和地球上的生物多样性造成伤害。这样的影响会导致狂风、超压冲击、热辐射、陨石坑、地震震动、喷出物沉积、海啸等等。随着小行星参数和性质数据的可用性,它提供了一个使用机器学习(ML)来解决这个问题并降低风险的机会。本文对潜在危险小行星(PHAs)的影响进行了深入的研究,并提出了一种有监督的机器学习方法来检测具有特定参数的小行星是否危险。我们比较了在数据上实现的多种分类算法。随机森林在准确率(99.99%)和平均F1-分数(99.22%)方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Body Sensors for Implementation of Human Activity Recognition Performance Prediction of Product/Person Using Real Time Twitter Tweets Survey on Centric Data Protection Method for Cloud Storage Application Twitter Sentiment Analysis using Natural Language Processing Crime Visualization using A Novel GIS-Based Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1