Exploring labeled spatial datasets using association analysis

T. Stepinski, Josue Salazar, W. Ding
{"title":"Exploring labeled spatial datasets using association analysis","authors":"T. Stepinski, Josue Salazar, W. Ding","doi":"10.1145/1869790.1869882","DOIUrl":null,"url":null,"abstract":"We use an association analysis-based strategy for exploration of multi-attribute spatial datasets possessing naturally arising classification. In this demonstration, we present a prototype system, ESTATE (Exploring Spatial daTa Association patTErns), inverting such classification by interpreting different classes found in the dataset in terms of sets of discriminative patterns of its attributes. The system consists of several core components including discriminative data mining, similarity between transactional patterns, and visualization. An algorithm for calculating similarity measure between patterns is the major original contribution that facilitates summarization of discovered information and makes the entire framework practical for real life applications. We demonstrate two applications of ESTATE in the domains of ecology and sociology. The ecology application is to discover the associations of between environmental factors and the spatial distribution of biodiversity across the contiguous United States, and the sociology application aims to discover different spatio-social motifs of support for Barack Obama in the 2008 presidential election.","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use an association analysis-based strategy for exploration of multi-attribute spatial datasets possessing naturally arising classification. In this demonstration, we present a prototype system, ESTATE (Exploring Spatial daTa Association patTErns), inverting such classification by interpreting different classes found in the dataset in terms of sets of discriminative patterns of its attributes. The system consists of several core components including discriminative data mining, similarity between transactional patterns, and visualization. An algorithm for calculating similarity measure between patterns is the major original contribution that facilitates summarization of discovered information and makes the entire framework practical for real life applications. We demonstrate two applications of ESTATE in the domains of ecology and sociology. The ecology application is to discover the associations of between environmental factors and the spatial distribution of biodiversity across the contiguous United States, and the sociology application aims to discover different spatio-social motifs of support for Barack Obama in the 2008 presidential election.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用关联分析探索标记空间数据集
我们使用基于关联分析的策略来探索具有自然产生分类的多属性空间数据集。在这个演示中,我们展示了一个原型系统ESTATE(探索空间数据关联模式),通过根据其属性的判别模式集解释数据集中发现的不同类来颠倒这种分类。该系统由几个核心组件组成,包括判别数据挖掘、事务模式之间的相似性和可视化。用于计算模式之间相似性度量的算法是主要的原始贡献,它有助于对发现的信息进行汇总,并使整个框架适用于实际应用程序。我们展示ESTATE在生态学和社会学领域的两种应用。生态学应用的目的是发现环境因素与美国本土生物多样性空间分布之间的关联,社会学应用的目的是发现支持奥巴马在2008年总统大选中的不同空间-社会动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pai Geolocation Time Geography Stationarity Cognitive Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1