{"title":"Structural Health Monitoring of Infrastructures Using Sensors as Smart Materials– Review and Perspective","authors":"A. Dinesh","doi":"10.21741/9781644901953-29","DOIUrl":null,"url":null,"abstract":"Abstract. Smart materials with sensors can monitor the structure's performance under external loading circumstances. They may also monitor internal deformations or damages caused by environmental factors such as temperature, humidity, etc. As a result, the sensors are linked to structural health monitoring to create automated systems for structural monitoring, inspection, and damage identification. The formulation of this review article was prompted by a growing interest in structural health monitoring and the need to ensure structure safety to detect problems early and avert collapse. The structure, measurement methods, and potential of sensors such as fiber optic, piezoelectric, corrosion, ceramic, and self-sensing cement composite utilized in the health monitoring of concrete structures are discussed in this review paper. This review also includes a brief and comparative analysis of various sensors, as well as the optimal number and location of sensors. The study exposed that choosing a suitable sensor is critical for accurate sensing and long-term structure monitoring. The sensor can detect physical (stress, strain) and chemical (corrosion) variables that affect the structure's endurance. Despite significant advances in damage monitoring approaches utilizing sensors, the study suggests that efficient sensor deployment remains problematic. The review revealed that the type of parameter to be monitored (stress, strain, humidity, etc.) and the structural and climatic conditions in which the sensor will be used determine the sensor's selection. As a result, a self-sensing cement composite based on carbon nanofiber (CNF) has been developed, which has good durability and compatibility with concrete structures. However, increasing the amount of CNF lowers the composite's compressive and flexural strength due to particle agglomeration. As a result, the review covers several sensors used in structural health monitoring with their measurements, applications, benefits, and limitations.","PeriodicalId":135346,"journal":{"name":"Sustainable Materials and Smart Practices","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Smart Practices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644901953-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract. Smart materials with sensors can monitor the structure's performance under external loading circumstances. They may also monitor internal deformations or damages caused by environmental factors such as temperature, humidity, etc. As a result, the sensors are linked to structural health monitoring to create automated systems for structural monitoring, inspection, and damage identification. The formulation of this review article was prompted by a growing interest in structural health monitoring and the need to ensure structure safety to detect problems early and avert collapse. The structure, measurement methods, and potential of sensors such as fiber optic, piezoelectric, corrosion, ceramic, and self-sensing cement composite utilized in the health monitoring of concrete structures are discussed in this review paper. This review also includes a brief and comparative analysis of various sensors, as well as the optimal number and location of sensors. The study exposed that choosing a suitable sensor is critical for accurate sensing and long-term structure monitoring. The sensor can detect physical (stress, strain) and chemical (corrosion) variables that affect the structure's endurance. Despite significant advances in damage monitoring approaches utilizing sensors, the study suggests that efficient sensor deployment remains problematic. The review revealed that the type of parameter to be monitored (stress, strain, humidity, etc.) and the structural and climatic conditions in which the sensor will be used determine the sensor's selection. As a result, a self-sensing cement composite based on carbon nanofiber (CNF) has been developed, which has good durability and compatibility with concrete structures. However, increasing the amount of CNF lowers the composite's compressive and flexural strength due to particle agglomeration. As a result, the review covers several sensors used in structural health monitoring with their measurements, applications, benefits, and limitations.