Systematic Clustering-Based Microaggregation for Statistical Disclosure Control

M. E. Kabir, Hua Wang
{"title":"Systematic Clustering-Based Microaggregation for Statistical Disclosure Control","authors":"M. E. Kabir, Hua Wang","doi":"10.1109/NSS.2010.66","DOIUrl":null,"url":null,"abstract":"Microdata protection in statistical databases has recently become a major societal concern. Micro aggregation for Statistical Disclosure Control (SDC) is a family of methods to protect microdata from individual identification. Micro aggregation works by partitioning the microdata into groups of at least k records and then replacing the records in each group with the centroid of the group. This paper presents a clustering-based micro aggregation method to minimize the information loss. The proposed technique adopts to group similar records together in a systematic way and then anonymized with the centroid of each group individually. The structure of systematic clustering problem is defined and investigated and an algorithm of the proposed problem is developed. Experimental results show that our method attains a reasonable dominance with respect to both information loss and execution time than the most popular heuristic algorithm called Maximum Distance to Average Vector (MDAV).","PeriodicalId":127173,"journal":{"name":"2010 Fourth International Conference on Network and System Security","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth International Conference on Network and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS.2010.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Microdata protection in statistical databases has recently become a major societal concern. Micro aggregation for Statistical Disclosure Control (SDC) is a family of methods to protect microdata from individual identification. Micro aggregation works by partitioning the microdata into groups of at least k records and then replacing the records in each group with the centroid of the group. This paper presents a clustering-based micro aggregation method to minimize the information loss. The proposed technique adopts to group similar records together in a systematic way and then anonymized with the centroid of each group individually. The structure of systematic clustering problem is defined and investigated and an algorithm of the proposed problem is developed. Experimental results show that our method attains a reasonable dominance with respect to both information loss and execution time than the most popular heuristic algorithm called Maximum Distance to Average Vector (MDAV).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于系统聚类的微聚集统计披露控制
统计数据库中的微数据保护最近已成为一个主要的社会问题。用于统计披露控制(SDC)的微聚合是保护微数据不受个人识别的一系列方法。微聚合的工作原理是将微数据划分为至少有k条记录的组,然后用该组的质心替换每组中的记录。本文提出了一种基于聚类的微聚合方法,使信息丢失最小化。本文提出的方法是将相似的记录系统地分组在一起,然后以每组的质心单独匿名化。定义并研究了系统聚类问题的结构,提出了系统聚类问题的算法。实验结果表明,与最流行的启发式算法MDAV (Maximum Distance to Average Vector)相比,我们的方法在信息丢失和执行时间方面都取得了合理的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Privacy-Preserving Protocols for String Matching The PU-Tree: A Partition-Based Uncertain High-Dimensional Indexing Algorithm Ignorant Experts: Computer and Network Security Support from Internet Service Providers Resource Selection from Distributed Semantic Web Stores A Purpose Based Access Control in XML Databases System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1