Transformer Based Multimodal Scene Recognition in Soccer Videos

Yaozong Gan, Ren Togo, Takahiro Ogawa, M. Haseyama
{"title":"Transformer Based Multimodal Scene Recognition in Soccer Videos","authors":"Yaozong Gan, Ren Togo, Takahiro Ogawa, M. Haseyama","doi":"10.1109/ICMEW56448.2022.9859304","DOIUrl":null,"url":null,"abstract":"This paper presents a transformer-based multimodal soccer scene recognition method for both visual and audio modalities. Our approach directly uses the original video frames and audio spectrogram from the soccer video as the input of the transformer model, which can capture the spatial information of the action at a moment and the contextual temporal information between different actions in the soccer videos. We fuse both video frames and audio spectrogram information output from the transformer model in order to better identify scenes that occur in real soccer matches. The late fusion performs a weighted average of visual and audio estimation results to obtain complete information of a soccer scene. We evaluate the proposed method on SoccerNet-V2 dataset and confirm that our method achieves the best performance compared with the recent and state-of-the-art methods.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a transformer-based multimodal soccer scene recognition method for both visual and audio modalities. Our approach directly uses the original video frames and audio spectrogram from the soccer video as the input of the transformer model, which can capture the spatial information of the action at a moment and the contextual temporal information between different actions in the soccer videos. We fuse both video frames and audio spectrogram information output from the transformer model in order to better identify scenes that occur in real soccer matches. The late fusion performs a weighted average of visual and audio estimation results to obtain complete information of a soccer scene. We evaluate the proposed method on SoccerNet-V2 dataset and confirm that our method achieves the best performance compared with the recent and state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变压器的足球视频多模态场景识别
提出了一种基于变压器的多模态足球场景视觉和音频识别方法。该方法直接使用足球视频的原始视频帧和音频频谱图作为变压器模型的输入,可以捕获足球视频中动作在某一时刻的空间信息和不同动作之间的上下文时间信息。我们融合了从变压器模型输出的视频帧和音频频谱信息,以便更好地识别真实足球比赛中的场景。后期融合对视觉和音频估计结果进行加权平均,以获得足球场景的完整信息。我们在SoccerNet-V2数据集上评估了所提出的方法,并确认与最新和最先进的方法相比,我们的方法达到了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Quality Evaluation for Generated Music Based on Emotion Recognition Model Bottleneck Detection in Crowded Video Scenes Utilizing Lagrangian Motion Analysis Via Density and Arc Length Measures Efficient Topology Coding and Payload Partitioning Techniques for Neural Network Compression (NNC) Standard Exploring Multisensory Feedback for Virtual Reality Relaxation A Unified Video Summarization for Video Anomalies Through Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1