The Rise Efficiency of Coronavirus Disease Classification Employing Feature Extraction

Anis Fitri Nur Masruriyah, H. Basri, H. H. Handayani, Ahmad Fauzi, Ayu Ratna Juwita, Deden Wahiddin
{"title":"The Rise Efficiency of Coronavirus Disease Classification Employing Feature Extraction","authors":"Anis Fitri Nur Masruriyah, H. Basri, H. H. Handayani, Ahmad Fauzi, Ayu Ratna Juwita, Deden Wahiddin","doi":"10.1109/ICIC54025.2021.9632914","DOIUrl":null,"url":null,"abstract":"COVID-19 has been an epidemic since the end of 2019. The number of patients with COVID-19 continues to escalate until new variants emerge. The COVID-19 detection procedure begins with detecting early symptoms, furthermore, confirmed by the swab and Chest X-Ray methods. The process of swab and Chest X-Ray takes a relatively long time since in Chest X-Ray some patients have the same symptoms as pneumonia. This study carried out the classification of COVID-19 and not COVID-19 with Discrete Wavelet Transform as feature extraction techniques and deep learning as the classification method. The result of this study capable to identify Chest X-Ray with COVID-19 and the accuracy increased of more than 10% on Support Vector Machine, Decision Tree and Deep Learning. So that, the comparison result showed that feature extraction was able to significantly improve accuracy.","PeriodicalId":189541,"journal":{"name":"2021 Sixth International Conference on Informatics and Computing (ICIC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Sixth International Conference on Informatics and Computing (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC54025.2021.9632914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

COVID-19 has been an epidemic since the end of 2019. The number of patients with COVID-19 continues to escalate until new variants emerge. The COVID-19 detection procedure begins with detecting early symptoms, furthermore, confirmed by the swab and Chest X-Ray methods. The process of swab and Chest X-Ray takes a relatively long time since in Chest X-Ray some patients have the same symptoms as pneumonia. This study carried out the classification of COVID-19 and not COVID-19 with Discrete Wavelet Transform as feature extraction techniques and deep learning as the classification method. The result of this study capable to identify Chest X-Ray with COVID-19 and the accuracy increased of more than 10% on Support Vector Machine, Decision Tree and Deep Learning. So that, the comparison result showed that feature extraction was able to significantly improve accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用特征提取提高冠状病毒疾病分类效率
自2019年底以来,COVID-19一直是一场流行病。COVID-19患者人数继续增加,直到出现新的变体。COVID-19检测程序首先发现早期症状,然后通过拭子和胸部x射线方法确认。由于在胸部x光检查中有些患者的症状与肺炎相同,因此拭子和胸部x光检查的过程需要较长时间。本研究以离散小波变换为特征提取技术,以深度学习为分类方法,对COVID-19和非COVID-19进行分类。本研究结果能够识别COVID-19胸片,并且在支持向量机、决策树和深度学习上的准确率提高了10%以上。因此,对比结果表明,特征提取能够显著提高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of IoT adoption on Trucking Logistics in Various Industry in Indonesia Design of Blockchain Implementation for Supervision of Vaccine Distribution: Indonesia Case [ICIC 2021 Back Cover] Design and Simulation of Antipodal Vivaldi Antenna (AVA) AT 2.6 GHz For 5G Communication Optimation Classification of Chili Leaf Disease Using the Gray Level Co-occurrence Matrix (GLCM) and the Support Vector Machine (SVM) Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1