Building an Intelligent Telemonitoring System for Heart Failure: The Use of the Internet of Things, Big Data, and Machine Learning

S. Eletter, Tahira Yasmin, G. Elrefae, H. Aliter, Abdullah Elrefae
{"title":"Building an Intelligent Telemonitoring System for Heart Failure: The Use of the Internet of Things, Big Data, and Machine Learning","authors":"S. Eletter, Tahira Yasmin, G. Elrefae, H. Aliter, Abdullah Elrefae","doi":"10.1109/ACIT50332.2020.9300113","DOIUrl":null,"url":null,"abstract":"Heart failure (HF) is a significant and chronic health disease. Nevertheless, despite the high mortality rate and associated costs, it can be managed. Emerging technologies such as artificial intelligence, big data, and internet of things offer advantages for the management of HF. Using the medical records of HF patients, five machine learning algorithms - deep learning (DL), generalized linear models (GLM), naïve base (NB), random forest (RF), and support vector machines(SVM) were used to build classifiers to predict HF. The results indicate that machine learning algorithms are effective tools for classifying the medical records of HF patients. GLM and SVM can potentially be utilized together to predict HF with high classification accuracy.","PeriodicalId":193891,"journal":{"name":"2020 21st International Arab Conference on Information Technology (ACIT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT50332.2020.9300113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Heart failure (HF) is a significant and chronic health disease. Nevertheless, despite the high mortality rate and associated costs, it can be managed. Emerging technologies such as artificial intelligence, big data, and internet of things offer advantages for the management of HF. Using the medical records of HF patients, five machine learning algorithms - deep learning (DL), generalized linear models (GLM), naïve base (NB), random forest (RF), and support vector machines(SVM) were used to build classifiers to predict HF. The results indicate that machine learning algorithms are effective tools for classifying the medical records of HF patients. GLM and SVM can potentially be utilized together to predict HF with high classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建心力衰竭智能远程监测系统:利用物联网、大数据和机器学习
心力衰竭(HF)是一种重要的慢性疾病。然而,尽管死亡率和相关费用很高,但它是可以控制的。人工智能、大数据、物联网等新兴技术为高频管理提供了优势。采用深度学习(DL)、广义线性模型(GLM)、naïve base (NB)、随机森林(RF)、支持向量机(SVM)等5种机器学习算法,构建HF分类器进行预测。结果表明,机器学习算法是对心衰患者病历进行分类的有效工具。GLM和SVM可以共同用于高频预测,分类精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Sensor Network MAC Energy - efficiency Protocols: A Survey Keystroke Identifier Using Fuzzy Logic to Increase Password Security A seq2seq Neural Network based Conversational Agent for Gulf Arabic Dialect Machine Learning and Soft Robotics Studying and Analyzing the Fog-based Internet of Robotic Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1