Proactive Security: Embedded AI Solution for Violent and Abusive Speech Recognition

C. Shulby, Leonardo Pombal, Vitor Jordão, Guilherme Ziolle, Bruno Martho, Antônio Postal, Thiago Prochnow
{"title":"Proactive Security: Embedded AI Solution for Violent and Abusive Speech Recognition","authors":"C. Shulby, Leonardo Pombal, Vitor Jordão, Guilherme Ziolle, Bruno Martho, Antônio Postal, Thiago Prochnow","doi":"10.1109/BRACIS.2018.00050","DOIUrl":null,"url":null,"abstract":"Violence is an epidemic in Brazil and a problem on the rise world-wide. Mobile devices provide communication technologies which can be used to monitor and alert about violent situations. However, current solutions, like panic buttons or safe words, might increase the loss of life in violent situations. We propose an embedded artificial intelligence solution, using natural language and speech processing technology, to silently alert someone who can help in this situation. The corpus used contains 400 positive phrases and 800 negative phrases, totaling 1,200 sentences which are classified using two well-known extraction methods for natural language processing tasks: bag-of-words and word embeddings and classified with a support vector machine. We describe the proof-of-concept product in development with promising results, indicating a path towards a commercial product. More importantly we show that model improvements via word embeddings and data augmentation techniques provide an intrinsically robust model. The final embedded solution also has a small footprint of less than 10 MB.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Violence is an epidemic in Brazil and a problem on the rise world-wide. Mobile devices provide communication technologies which can be used to monitor and alert about violent situations. However, current solutions, like panic buttons or safe words, might increase the loss of life in violent situations. We propose an embedded artificial intelligence solution, using natural language and speech processing technology, to silently alert someone who can help in this situation. The corpus used contains 400 positive phrases and 800 negative phrases, totaling 1,200 sentences which are classified using two well-known extraction methods for natural language processing tasks: bag-of-words and word embeddings and classified with a support vector machine. We describe the proof-of-concept product in development with promising results, indicating a path towards a commercial product. More importantly we show that model improvements via word embeddings and data augmentation techniques provide an intrinsically robust model. The final embedded solution also has a small footprint of less than 10 MB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动安全:暴力和滥用语音识别的嵌入式AI解决方案
暴力在巴西是一种流行病,在世界范围内也是一个日益严重的问题。移动设备提供通信技术,可用于监测和警告暴力局势。然而,目前的解决方案,如紧急按钮或安全话语,可能会增加暴力局势中的生命损失。我们提出了一种嵌入式人工智能解决方案,使用自然语言和语音处理技术,在这种情况下无声地提醒可以提供帮助的人。使用的语料库包含400个肯定短语和800个否定短语,共计1200个句子,使用两种著名的自然语言处理任务提取方法:词袋和词嵌入,并使用支持向量机进行分类。我们描述了正在开发的具有良好结果的概念验证产品,指出了通往商业产品的道路。更重要的是,我们表明,通过词嵌入和数据增强技术对模型进行改进,可以提供一个内在健壮的模型。最终的嵌入式解决方案占用空间也很小,不到10 MB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1