M. Klaiber, D. Bailey, Silvia Ahmed, Y. Baroud, S. Simon
{"title":"A high-throughput FPGA architecture for parallel connected components analysis based on label reuse","authors":"M. Klaiber, D. Bailey, Silvia Ahmed, Y. Baroud, S. Simon","doi":"10.1109/FPT.2013.6718372","DOIUrl":null,"url":null,"abstract":"A memory efficient architecture for single-pass connected components analysis suited for high throughput embedded image processing systems is proposed which achieves a high throughput by partitioning the image into several vertical slices processed in parallel. The low latency of the architecture allows reuse of labels associated with the image objects. This reduces the amount of memory by a factor of more than 5 compared to previous work. This is significant, since memory is a critical resource in embedded image processing on FPGAs.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
A memory efficient architecture for single-pass connected components analysis suited for high throughput embedded image processing systems is proposed which achieves a high throughput by partitioning the image into several vertical slices processed in parallel. The low latency of the architecture allows reuse of labels associated with the image objects. This reduces the amount of memory by a factor of more than 5 compared to previous work. This is significant, since memory is a critical resource in embedded image processing on FPGAs.