{"title":"A Hybrid Batch Mode Fault Tolerance Strategy in Desktop Grids","authors":"G. Rani, J. Bansal","doi":"10.4018/ijncr.2020040103","DOIUrl":null,"url":null,"abstract":"Desktop grids make use of unused resources of personal computers provided by volunteers to work as a huge processor and make them available to users that need them. The rate of heterogeneity, volatility, and unreliability is higher in case of a desktop grid in comparison to conventional systems. Therefore, the application of fault tolerance strategies becomes an inevitable requirement. In this article, a hybrid fault tolerance strategy is proposed which works in three phases. First, two phases deal with the task and resource scheduling in which appropriate scheduling decisions are taken in order to select the most suitable resource for a task. Even if any failure occurs, it is then recovered in the third phase by using rescheduling and checkpointing. The proposed strategy is compared against existing hybrid fault tolerance scheduling strategies and ensures a 100% success rate and processor utilization and outperforms by a factor of 3.5%, 0.4%, and 0.1% when turnaround time, throughput, and makespan, respectively, are taken into account","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2020040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Desktop grids make use of unused resources of personal computers provided by volunteers to work as a huge processor and make them available to users that need them. The rate of heterogeneity, volatility, and unreliability is higher in case of a desktop grid in comparison to conventional systems. Therefore, the application of fault tolerance strategies becomes an inevitable requirement. In this article, a hybrid fault tolerance strategy is proposed which works in three phases. First, two phases deal with the task and resource scheduling in which appropriate scheduling decisions are taken in order to select the most suitable resource for a task. Even if any failure occurs, it is then recovered in the third phase by using rescheduling and checkpointing. The proposed strategy is compared against existing hybrid fault tolerance scheduling strategies and ensures a 100% success rate and processor utilization and outperforms by a factor of 3.5%, 0.4%, and 0.1% when turnaround time, throughput, and makespan, respectively, are taken into account