Runtime Management of Data Quality for Scientific Observatories Using Edge and In-Transit Resources

A. Zamani, Daniel Balouek-Thomert, J. J. Villalobos, I. Rodero, M. Parashar
{"title":"Runtime Management of Data Quality for Scientific Observatories Using Edge and In-Transit Resources","authors":"A. Zamani, Daniel Balouek-Thomert, J. J. Villalobos, I. Rodero, M. Parashar","doi":"10.1109/CAHPC.2018.8645940","DOIUrl":null,"url":null,"abstract":"Modern Cyberinfrastructures (CIs) operate to bring content produced from remote data sources such as sensors and scientific instruments and deliver it to end users and workflow applications. Maintaining data quality/resolution and on-time data delivery while considering an increasing number of computing, storage and network resources requires a reactive system, able to adapt to changing demands. In this paper, we propose a modelization of such system by expressing the dynamic stage of resources in the context of edge and in-transit computing. By considering resource utilization, approximation techniques and users' constraints, our proposed engine is generating mappings of workflow stages on heterogeneous geo-distributed resources. We specifically propose a runtime management layer that adapts the data resolution being delivered to the users by implementing feedback loops over the resources involved in the delivery and processing of the data streams. We implement our model into a subscription-based data streaming framework which enables integration of large facilities and advanced CIs. Experimental results show that dynamically adapting data resolution can overcome bandwidth limitation in wide area streaming analytics.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern Cyberinfrastructures (CIs) operate to bring content produced from remote data sources such as sensors and scientific instruments and deliver it to end users and workflow applications. Maintaining data quality/resolution and on-time data delivery while considering an increasing number of computing, storage and network resources requires a reactive system, able to adapt to changing demands. In this paper, we propose a modelization of such system by expressing the dynamic stage of resources in the context of edge and in-transit computing. By considering resource utilization, approximation techniques and users' constraints, our proposed engine is generating mappings of workflow stages on heterogeneous geo-distributed resources. We specifically propose a runtime management layer that adapts the data resolution being delivered to the users by implementing feedback loops over the resources involved in the delivery and processing of the data streams. We implement our model into a subscription-based data streaming framework which enables integration of large facilities and advanced CIs. Experimental results show that dynamically adapting data resolution can overcome bandwidth limitation in wide area streaming analytics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用边缘和在途资源的科学观测站数据质量运行时管理
现代网络基础设施(ci)的作用是从传感器和科学仪器等远程数据源获取内容,并将其交付给最终用户和工作流应用程序。在考虑到越来越多的计算、存储和网络资源的同时,保持数据质量/分辨率和准时的数据交付需要一个反应性系统,能够适应不断变化的需求。在本文中,我们通过在边缘和在途计算的背景下表达资源的动态阶段,提出了这样一个系统的建模。通过考虑资源利用率、近似技术和用户约束,我们提出的引擎在异构地理分布资源上生成工作流阶段的映射。我们特别提出了一个运行时管理层,它通过在数据流的交付和处理中涉及的资源上实现反馈循环来适应交付给用户的数据解析。我们将模型实现为基于订阅的数据流框架,该框架支持大型设施和高级ci的集成。实验结果表明,动态适应数据分辨率可以克服广域流分析中的带宽限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Time Predictability Features of ARM Big. LITTLE Multicores Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods Predicting the Performance Impact of Increasing Memory Bandwidth for Scientific Workflows From Java to FPGA: An Experience with the Intel HARP System Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1