Cryptocurrencies and Lucky Factors: The value of technical and fundamental analysis

IF 2.8 3区 经济学 Q2 BUSINESS, FINANCE International Journal of Finance & Economics Pub Date : 2023-07-25 DOI:10.1002/ijfe.2863
Mingzhe Wei, Ioannis Kyriakou, Georgios Sermpinis, Charalampos Stasinakis
{"title":"Cryptocurrencies and Lucky Factors: The value of technical and fundamental analysis","authors":"Mingzhe Wei,&nbsp;Ioannis Kyriakou,&nbsp;Georgios Sermpinis,&nbsp;Charalampos Stasinakis","doi":"10.1002/ijfe.2863","DOIUrl":null,"url":null,"abstract":"<p>This study explores the effectiveness of technical and fundamental analysis in predicting and trading the returns of 12 cryptocurrencies, namely Bitcoin, Ethereum, Ripple, Dash, Cardano, Avalanche, Binance Coin, Dogecoin, Polkadot, Litecoin, Terra and Solana. A universe of 7846 technical rules, five log moving average-based ratios and 59 fundamental factors are used to test predictability and profitability through the Lucky Factors methodology and Superior Predictive Ability test. We observe predictability for a small set of technical and fundamental rules, while only the short-term log moving average-based ratio and Hashrate Index demonstrate genuine in-sample and out-of-sample profitability. Our findings question the value of both technical and fundamental analysis on cryptocurrencies.</p>","PeriodicalId":47461,"journal":{"name":"International Journal of Finance & Economics","volume":"29 4","pages":"4073-4104"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijfe.2863","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Finance & Economics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijfe.2863","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the effectiveness of technical and fundamental analysis in predicting and trading the returns of 12 cryptocurrencies, namely Bitcoin, Ethereum, Ripple, Dash, Cardano, Avalanche, Binance Coin, Dogecoin, Polkadot, Litecoin, Terra and Solana. A universe of 7846 technical rules, five log moving average-based ratios and 59 fundamental factors are used to test predictability and profitability through the Lucky Factors methodology and Superior Predictive Ability test. We observe predictability for a small set of technical and fundamental rules, while only the short-term log moving average-based ratio and Hashrate Index demonstrate genuine in-sample and out-of-sample profitability. Our findings question the value of both technical and fundamental analysis on cryptocurrencies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加密货币与幸运因素:技术分析和基本面分析的价值
本研究探讨了技术分析和基本面分析在预测和交易 12 种加密货币(即比特币、以太坊、瑞波币、Dash、卡达诺、雪崩币、Binance Coin、Dogecoin、Polkadot、莱特币、Terra 和 Solana)收益方面的有效性。我们使用 7846 条技术规则、5 个基于对数移动平均线的比率和 59 个基本因素,通过幸运因素方法和卓越预测能力测试来检验可预测性和盈利能力。我们观察到一小部分技术和基本面规则具有可预测性,而只有基于对数移动平均线的短期比率和哈希率指数表现出真正的样本内和样本外盈利能力。我们的研究结果对加密货币技术分析和基本面分析的价值提出了质疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
143
期刊最新文献
Issue Information Issue Information Issue Information Issue Information Correction to “Outward foreign direct investment and economic growth in Romania: Evidence from non-linear ARDL approach”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1