Statistical and incremental methods for neural models selection

S. Abid, M. Chtourou, M. Djemel
{"title":"Statistical and incremental methods for neural models selection","authors":"S. Abid, M. Chtourou, M. Djemel","doi":"10.1504/IJAISC.2014.059287","DOIUrl":null,"url":null,"abstract":"This work presents two methods of selection of neural models for identification of dynamic systems. Initially, a strategy of selection based on statistical tests, which relates to training and generalisation performances of a neural model is analysed. In the second time, a new constructive approach of neural model selection, which the training begins with minimal structure and then incrementally adds new hidden units and/or layers, is described. The simulation and the application of these methods for selection of neural models are also considered.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2014.059287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents two methods of selection of neural models for identification of dynamic systems. Initially, a strategy of selection based on statistical tests, which relates to training and generalisation performances of a neural model is analysed. In the second time, a new constructive approach of neural model selection, which the training begins with minimal structure and then incrementally adds new hidden units and/or layers, is described. The simulation and the application of these methods for selection of neural models are also considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经模型选择的统计和增量方法
本文提出了两种选择用于动态系统辨识的神经模型的方法。首先,分析了一种基于统计检验的选择策略,它关系到神经模型的训练性能和泛化性能。第二次,描述了一种新的构造性神经模型选择方法,即从最小结构开始训练,然后逐渐增加新的隐藏单元和/或层。并对这些方法在神经网络模型选择中的仿真和应用进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Path management strategy to reduce flooding of grid fisheye state routing protocol in mobile ad hoc network using fuzzy and rough set theory A novel cryptosystem based on cooperating distributed grammar systems Analysis of an M/G/1 retrial queue with Bernoulli vacation, two types of service and starting failure Array P system with t-communicating and permitting mate operation Two-dimensional double jumping finite automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1