The joint effect of semantic and syntactic word embeddings on sentiment analysis

Shu Chen, Guang Chen, Wei Wang
{"title":"The joint effect of semantic and syntactic word embeddings on sentiment analysis","authors":"Shu Chen, Guang Chen, Wei Wang","doi":"10.1109/ICNIDC.2016.7974598","DOIUrl":null,"url":null,"abstract":"Employing pre-trained word embeddings as preliminary features in convolutional neural networks (CNN) for natural language processing (NLP) tasks has been proved to be of benefit. We exploit this idea by taking advantage of different types of word embeddings at the same time. To be specific, we extend CNN models to coordinate two lookup tables, which exploit semantic word embeddings and syntactic word embeddings at the same time. We test our models on several review datasets and all results indicate the positive effect on sentiment analysis. To understand the reason behind, we explore the difference of the two word embeddings and how they influence the CNN models.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Employing pre-trained word embeddings as preliminary features in convolutional neural networks (CNN) for natural language processing (NLP) tasks has been proved to be of benefit. We exploit this idea by taking advantage of different types of word embeddings at the same time. To be specific, we extend CNN models to coordinate two lookup tables, which exploit semantic word embeddings and syntactic word embeddings at the same time. We test our models on several review datasets and all results indicate the positive effect on sentiment analysis. To understand the reason behind, we explore the difference of the two word embeddings and how they influence the CNN models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义词嵌入和句法词嵌入在情感分析中的联合作用
将预训练词嵌入作为卷积神经网络(CNN)的初步特征用于自然语言处理(NLP)任务已被证明是有益的。我们通过同时利用不同类型的词嵌入来利用这个想法。具体来说,我们扩展了CNN模型来协调两个查找表,这两个查找表同时利用了语义词嵌入和句法词嵌入。我们在几个回顾数据集上测试了我们的模型,所有的结果都表明对情感分析有积极的影响。为了理解背后的原因,我们探讨了两种词嵌入的差异以及它们如何影响CNN模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection-assisted interference parameter estimation and interference cancellation for LTE-Advanced system A network risk assessment methodology for power communication business An experimental study: The sufficient respiration rate detection technique via continuous wave Doppler radar Automatic calculation model of large scale soil loss model based on csle model Improved belief propagation with istinctiveness measure for stereo matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1