Multi-focus Image Fusion by Nonsubsampled Shearlet Transform

Yuan Cao, Shutao Li, Jianwen Hu
{"title":"Multi-focus Image Fusion by Nonsubsampled Shearlet Transform","authors":"Yuan Cao, Shutao Li, Jianwen Hu","doi":"10.1109/ICIG.2011.37","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the nonsubsampled shear let transform for multi-focus image fusion. In the proposed method, source images are decomposed by nonsubsampled shear let transform firstly. Then the decomposition coefficients are merged according to the given fusion rule. Finally the fused image is reconstructed by inverse nonsubsampled shear let transform. The experimental results over five pairs of registered multi-focus images and one pair of mis-registered multi-focus images demonstrate the superiority of the proposed method.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

In this paper we introduce the nonsubsampled shear let transform for multi-focus image fusion. In the proposed method, source images are decomposed by nonsubsampled shear let transform firstly. Then the decomposition coefficients are merged according to the given fusion rule. Finally the fused image is reconstructed by inverse nonsubsampled shear let transform. The experimental results over five pairs of registered multi-focus images and one pair of mis-registered multi-focus images demonstrate the superiority of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非下采样Shearlet变换的多焦点图像融合
本文介绍了用于多焦点图像融合的非下采样剪切let变换。该方法首先对源图像进行非下采样剪切let变换分解。然后根据给定的融合规则对分解系数进行融合。最后,通过非下采样逆剪切let变换重建融合后的图像。在5对配准多聚焦图像和1对错配多聚焦图像上的实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1