An Improved KNN Algorithm Based on Minority Class Distribution for Imbalanced Dataset

Bo Zang, Ruochen Huang, Lei Wang, Jianxin Chen, Feng Tian, Xin Wei
{"title":"An Improved KNN Algorithm Based on Minority Class Distribution for Imbalanced Dataset","authors":"Bo Zang, Ruochen Huang, Lei Wang, Jianxin Chen, Feng Tian, Xin Wei","doi":"10.1109/ICS.2016.0143","DOIUrl":null,"url":null,"abstract":"K-nearest neighbor (KNN) is a popular classification algorithm with good scalability, which has been widely used in many fields. When dealing with imbalanced data, minority examples are given the same weight as majority examples in the existing KNN algorithm. In this paper, we pay more attention to the minority class than the majority class, and we increase the weight of minority class according to the local characteristic of minority class distribution. In addition, we compare the proposed algorithm with the existing Weighted Distance K-nearest neighbor (WDKNN). Experimental results show that our algorithm performs better than WDKNN in imbalanced data sets.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

K-nearest neighbor (KNN) is a popular classification algorithm with good scalability, which has been widely used in many fields. When dealing with imbalanced data, minority examples are given the same weight as majority examples in the existing KNN algorithm. In this paper, we pay more attention to the minority class than the majority class, and we increase the weight of minority class according to the local characteristic of minority class distribution. In addition, we compare the proposed algorithm with the existing Weighted Distance K-nearest neighbor (WDKNN). Experimental results show that our algorithm performs better than WDKNN in imbalanced data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于少数类分布的非平衡数据集改进KNN算法
KNN (K-nearest neighbor)是一种流行的分类算法,具有良好的可扩展性,在许多领域得到了广泛的应用。在处理不平衡数据时,现有的KNN算法给予少数样例与多数样例相同的权重。在本文中,我们对少数阶层的重视程度高于多数阶层,并根据少数阶层分布的地方性特点,增加了少数阶层的权重。此外,我们将提出的算法与现有的加权距离k -最近邻(WDKNN)算法进行了比较。实验结果表明,该算法在不平衡数据集上的性能优于WDKNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource Allocation Algorithms for LTE over Wi-Fi Spectrum A Dynamically Adjusted Vehicles Navigation Scheme with Real-Time Traffic Information to Relieve Regional Traffic Congestion in Vehicular Ad-Hoc Networks Forward/Backward Unforgeable Digital Signature Scheme Using Symmetric-Key Crypto-System Mobile Edge Fog Computing in 5G Era: Architecture and Implementation Investigating the Determinants of Mobile Learning Acceptance in Higher Education Based on UTAUT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1