{"title":"Wireless power transfer to a pacemaker by using metamaterials and Yagi-Uda antenna concept","authors":"Rupam Das, H. Yoo","doi":"10.1109/IWAT.2015.7365283","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) to medical implants allows clinicians to avoid using bulky energy storage components. In this paper, we address WPT systems for a pacemaker (PM). A resonant inductive coupling method was employed in the WPT system by introducing a spiral transmitter (Tx) coil and a spiral receiver (Rx) coil. Here, we introduced the concept of the Yagi-Uda antenna by using metamaterials (MTMs) in order to increase WPT efficiency in the Medical Implanted Communication Service (MICS). Based on the simulation results in a realistic model of the human body, we were able to design a compact and efficient WPT system for PMs. Moreover, our simulation results showed that the Yagi-Uda antenna configuration can significantly increase WPT efficiency.","PeriodicalId":342623,"journal":{"name":"2015 International Workshop on Antenna Technology (iWAT)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2015.7365283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Wireless power transfer (WPT) to medical implants allows clinicians to avoid using bulky energy storage components. In this paper, we address WPT systems for a pacemaker (PM). A resonant inductive coupling method was employed in the WPT system by introducing a spiral transmitter (Tx) coil and a spiral receiver (Rx) coil. Here, we introduced the concept of the Yagi-Uda antenna by using metamaterials (MTMs) in order to increase WPT efficiency in the Medical Implanted Communication Service (MICS). Based on the simulation results in a realistic model of the human body, we were able to design a compact and efficient WPT system for PMs. Moreover, our simulation results showed that the Yagi-Uda antenna configuration can significantly increase WPT efficiency.