HPC Environment on Azure Cloud for Hydrological Parameter Estimation

Guangjun Zhang, Yingying Yao, C. Zheng
{"title":"HPC Environment on Azure Cloud for Hydrological Parameter Estimation","authors":"Guangjun Zhang, Yingying Yao, C. Zheng","doi":"10.1109/CSE.2014.83","DOIUrl":null,"url":null,"abstract":"High performance of data-intensive computation is required to deal with the complexity of analysis and simulation for hydrological modeling jobs like parameter estimation. The vigorously developing cloud computing has emerged as a promising platform for HPC (High Performance Computing) of science community. This paper presents our work in developing and implementing HPC environment on Azure cloud for applications of hydrological parameter estimation. According to the requirements of hydrological modeling, we design and construct a HPC environment on Azure cloud. After deploying parameter estimation applications on the HPC environment, a case study on groundwater uncertainty analysis in Heihe River Basin using the HPC environment is presented. Our work demonstrates that Azure cloud can advantageously complement traditional high performance computing infrastructure and help hydrological researchers improve model computing efficiency by handy process steps.","PeriodicalId":258990,"journal":{"name":"2014 IEEE 17th International Conference on Computational Science and Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 17th International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2014.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

High performance of data-intensive computation is required to deal with the complexity of analysis and simulation for hydrological modeling jobs like parameter estimation. The vigorously developing cloud computing has emerged as a promising platform for HPC (High Performance Computing) of science community. This paper presents our work in developing and implementing HPC environment on Azure cloud for applications of hydrological parameter estimation. According to the requirements of hydrological modeling, we design and construct a HPC environment on Azure cloud. After deploying parameter estimation applications on the HPC environment, a case study on groundwater uncertainty analysis in Heihe River Basin using the HPC environment is presented. Our work demonstrates that Azure cloud can advantageously complement traditional high performance computing infrastructure and help hydrological researchers improve model computing efficiency by handy process steps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Azure云的水文参数估算HPC环境
参数估计等水文建模工作需要高性能的数据密集型计算来处理复杂的分析和模拟。蓬勃发展的云计算已经成为科学界高性能计算(HPC)的一个很有前途的平台。本文介绍了我们在Azure云上开发和实现用于水文参数估计应用的高性能计算环境的工作。根据水文建模的要求,我们在Azure云上设计并构建了一个HPC环境。在HPC环境下部署参数估计应用后,以黑河流域为例,利用HPC环境进行了地下水不确定性分析。我们的工作表明,Azure云可以有利地补充传统的高性能计算基础设施,并帮助水文研究人员通过方便的过程步骤提高模型计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is Really NACK Protocol Secure to Be Employed in MANETs? Design of an X-Band Negative Resistance Oscillator Based on the ASIW in Modern Wireless Communication Systems Evolutionary Computation with Multi-variates Hybrid Multi-order Fuzzy Time Series for Stock Forecasting WiPCon: A Proxied Control Plane for Wireless Access Points in Software Defined Networks Design of Non-autonomous Chaotic Generalized Synchronization Based Pseudorandom Number Generator with Application in Avalanche Image Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1