Simultaneous Image Annotation and Geo-Tag Prediction via Correlation Guided Multi-task Learning

Hua Wang, D. Joshi, Jiebo Luo, Heng Huang, Minwoo Park
{"title":"Simultaneous Image Annotation and Geo-Tag Prediction via Correlation Guided Multi-task Learning","authors":"Hua Wang, D. Joshi, Jiebo Luo, Heng Huang, Minwoo Park","doi":"10.1109/ISM.2012.21","DOIUrl":null,"url":null,"abstract":"In recent years, several methods have been proposed to exploit image context (such as location) that provides valuable cues complementary to the image content, i.e., image annotations and geotags have been shown to assist the prediction of each other. To exploit the useful interrelatedness between these two heterogeneous prediction tasks, we propose a new correlation guided structured sparse multi-task learning method. We utilize a joint classification and regression model to identify annotation-informative and geotag-relevant image features. We also introduce the tree-structured sparsity regularizations into multi-task learning to integrate the label correlations in multi-label image annotation. Finally we derive an efficient algorithm to optimize our non-smooth objective function. We demonstrate the performance of our method on three real-world geotagged multi-label image data sets for both semantic annotation and geotag prediction.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, several methods have been proposed to exploit image context (such as location) that provides valuable cues complementary to the image content, i.e., image annotations and geotags have been shown to assist the prediction of each other. To exploit the useful interrelatedness between these two heterogeneous prediction tasks, we propose a new correlation guided structured sparse multi-task learning method. We utilize a joint classification and regression model to identify annotation-informative and geotag-relevant image features. We also introduce the tree-structured sparsity regularizations into multi-task learning to integrate the label correlations in multi-label image annotation. Finally we derive an efficient algorithm to optimize our non-smooth objective function. We demonstrate the performance of our method on three real-world geotagged multi-label image data sets for both semantic annotation and geotag prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关联引导的多任务学习的图像标注和地理标记预测
近年来,已经提出了几种方法来利用图像上下文(如位置)提供有价值的线索来补充图像内容,即图像注释和地理标记已被证明有助于相互预测。为了利用这两个异构预测任务之间的有用的相互关系,我们提出了一种新的关联引导的结构化稀疏多任务学习方法。我们利用联合分类和回归模型来识别注释信息和地理标签相关的图像特征。我们还在多任务学习中引入了树结构稀疏性正则化,以整合多标签图像标注中的标签相关性。最后给出了一种优化非光滑目标函数的有效算法。我们在三个真实世界的地理标记多标签图像数据集上展示了我们的方法在语义标注和地理标记预测方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1