Improving object extraction with depth-based methods

F. Prada, Leandro Cruz, L. Velho
{"title":"Improving object extraction with depth-based methods","authors":"F. Prada, Leandro Cruz, L. Velho","doi":"10.1109/CLEI.2013.6670637","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a method to do object extraction in RGBD images. Our method consists in a depth-based approach which provides an insight into connectedness, proximity and planarity of the scene. We combine the depth and the color in a GraphCut framework to achieve robustness. Specifically, we propose a depth-based seeding which reduces the uncertainty and limitations of the traditional color based seeding. The results of our depth-based seeding were satisfactory and allowed good segmentation results at indoor environments. An extension of our method to do video segmentation using contour graphs is also discussed.","PeriodicalId":184399,"journal":{"name":"2013 XXXIX Latin American Computing Conference (CLEI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 XXXIX Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI.2013.6670637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we introduce a method to do object extraction in RGBD images. Our method consists in a depth-based approach which provides an insight into connectedness, proximity and planarity of the scene. We combine the depth and the color in a GraphCut framework to achieve robustness. Specifically, we propose a depth-based seeding which reduces the uncertainty and limitations of the traditional color based seeding. The results of our depth-based seeding were satisfactory and allowed good segmentation results at indoor environments. An extension of our method to do video segmentation using contour graphs is also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进基于深度的目标提取方法
本文介绍了一种在RGBD图像中进行目标提取的方法。我们的方法包括基于深度的方法,该方法提供了对场景的连通性、接近性和平面性的洞察。我们在GraphCut框架中结合深度和颜色来实现鲁棒性。具体来说,我们提出了一种基于深度的播种方法,减少了传统基于颜色播种方法的不确定性和局限性。我们基于深度的播种结果令人满意,并且在室内环境下可以获得良好的分割结果。本文还讨论了利用等高线图进行视频分割的一种扩展方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calibration of the parameters of ESS system for Forest Fire prediction Automatic generation of SOAs for Business Process execution: A vision based on models Analyzing formal requirements specifications using an off-the-shelf model checker An ontology learning and teaching techniques for competency-based curricula design Vehicle scheduling for suburban public transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1