Automatically Generating a Concept Hierarchy with Graphs

Pucktada Treeratpituk, Madian Khabsa, C. Lee Giles
{"title":"Automatically Generating a Concept Hierarchy with Graphs","authors":"Pucktada Treeratpituk, Madian Khabsa, C. Lee Giles","doi":"10.1145/2756406.2756967","DOIUrl":null,"url":null,"abstract":"We propose a novel graph-based approach for constructing concept hierarchy from a large text corpus. Our algorithm incorporates both statistical co-occurrences and lexical similarity in optimizing the structure of the taxonomy. To automatically generate topic-dependent taxonomies from a large text corpus, we first extracts topical terms and their relationships from the corpus. The algorithm then constructs a weighted graph representing topics and their associations. A graph partitioning algorithm is then used to recursively partition the topic graph into a taxonomy. For evaluation, we apply our approach to articles, primarily computer science, in the CiteSeerX digital library and search engine.","PeriodicalId":256118,"journal":{"name":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2756406.2756967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel graph-based approach for constructing concept hierarchy from a large text corpus. Our algorithm incorporates both statistical co-occurrences and lexical similarity in optimizing the structure of the taxonomy. To automatically generate topic-dependent taxonomies from a large text corpus, we first extracts topical terms and their relationships from the corpus. The algorithm then constructs a weighted graph representing topics and their associations. A graph partitioning algorithm is then used to recursively partition the topic graph into a taxonomy. For evaluation, we apply our approach to articles, primarily computer science, in the CiteSeerX digital library and search engine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用图形自动生成概念层次结构
我们提出了一种新的基于图的方法来从大型文本语料库中构建概念层次结构。我们的算法结合了统计共现和词汇相似来优化分类结构。为了从大型文本语料库中自动生成主题相关的分类法,我们首先从语料库中提取主题术语及其关系。然后,该算法构建一个表示主题及其关联的加权图。然后使用图划分算法递归地将主题图划分为一个分类法。为了进行评估,我们将我们的方法应用于CiteSeerX数字图书馆和搜索引擎中的文章,主要是计算机科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Classifiers and User Feedback for Disambiguating Author Names Improving Access to Large-scale Digital Libraries ThroughSemantic-enhanced Search and Disambiguation ConfAssist: A Conflict Resolution Framework for Assisting the Categorization of Computer Science Conferences The HathiTrust Research Center: Providing analytic access to the HathiTrust Digital Library's 4.7 billion pages Scholarly Document Information Extraction using Extensible Features for Efficient Higher Order Semi-CRFs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1