Optimization methods for computer-aided design of artificial dielectric lens antennas

Arij Farhat, E. Jehamy, M. Ney
{"title":"Optimization methods for computer-aided design of artificial dielectric lens antennas","authors":"Arij Farhat, E. Jehamy, M. Ney","doi":"10.1109/IWAT.2010.5464690","DOIUrl":null,"url":null,"abstract":"The paper investigates the optimization of an electrically large antenna : a shaped dielectric substrate lens at millimeter wave frequencies (76 – 77 GHz). The aim is to determine the best lens profile that complies with arbitrary desired radiation pattern templates. A feed forward artificial neural network (ANN) was implemented in order to predict the radiation pattern of this antenna. Particle Swarm Optimization (PSO) procedure, combined with neural network modeling, is applied in order to minimize the cost function (the fitness function) and to fit specifications. The optimized results are in a good agreement with 3D MoM simulations.","PeriodicalId":125732,"journal":{"name":"2010 International Workshop on Antenna Technology (iWAT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2010.5464690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper investigates the optimization of an electrically large antenna : a shaped dielectric substrate lens at millimeter wave frequencies (76 – 77 GHz). The aim is to determine the best lens profile that complies with arbitrary desired radiation pattern templates. A feed forward artificial neural network (ANN) was implemented in order to predict the radiation pattern of this antenna. Particle Swarm Optimization (PSO) procedure, combined with neural network modeling, is applied in order to minimize the cost function (the fitness function) and to fit specifications. The optimized results are in a good agreement with 3D MoM simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工介质透镜天线计算机辅助设计的优化方法
本文研究了毫米波频率(76 ~ 77 GHz)下的一种电介质基板透镜天线的优化设计。目的是确定符合任意期望的辐射模式模板的最佳透镜轮廓。采用前馈人工神经网络(ANN)对天线的辐射方向图进行预测。将粒子群优化(PSO)方法与神经网络建模相结合,使代价函数(适应度函数)最小化,并使参数拟合。优化结果与三维模态模拟结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resolution capabilities of future THz cameras Compact dual-band (2.4/5.2GHz) monopole antenna for WLAN applications Printed fractal monopole antenna array for WLAN Sectoral metallic EBG antenna for high data rate wireless terrestrial communications with vehicles using mobile WiMAX technology Wideband slotted patch antennas using EBG structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1