Consistent Disparity Synthesis for Inter-View Prediction in Lightfield Compression

Yue Li, R. Mathew, Dominic Rüfenacht, A. Naman, D. Taubman
{"title":"Consistent Disparity Synthesis for Inter-View Prediction in Lightfield Compression","authors":"Yue Li, R. Mathew, Dominic Rüfenacht, A. Naman, D. Taubman","doi":"10.1109/PCS48520.2019.8954506","DOIUrl":null,"url":null,"abstract":"For efficient compression of lightfields that involve many views, it has been found preferable to explicitly communicate disparity/depth information at only a small subset of the view locations. In this study, we focus solely on inter-view prediction, which is fundamental to multi-view imagery compression, and itself depends upon the synthesis of disparity at new view locations. Current HDCA standardization activities consider a framework known as WaSP, that hierarchically predicts views, independently synthesizing the required disparity maps at the reference views for each prediction step. A potentially better approach is to progressively construct a unified multi-layered base-model for consistent disparity synthesis across many views. This paper improves significantly upon an existing base-model approach, demonstrating superior performance to WaSP. More generally, the paper investigates the implications of texture warping and disparity synthesis methods.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For efficient compression of lightfields that involve many views, it has been found preferable to explicitly communicate disparity/depth information at only a small subset of the view locations. In this study, we focus solely on inter-view prediction, which is fundamental to multi-view imagery compression, and itself depends upon the synthesis of disparity at new view locations. Current HDCA standardization activities consider a framework known as WaSP, that hierarchically predicts views, independently synthesizing the required disparity maps at the reference views for each prediction step. A potentially better approach is to progressively construct a unified multi-layered base-model for consistent disparity synthesis across many views. This paper improves significantly upon an existing base-model approach, demonstrating superior performance to WaSP. More generally, the paper investigates the implications of texture warping and disparity synthesis methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光场压缩中视差预测的一致性合成
为了有效地压缩涉及许多视图的光场,我们发现最好只在一小部分视图位置明确地传达视差/深度信息。在本研究中,我们只关注视点间预测,这是多视点图像压缩的基础,它本身依赖于新视点的视差综合。当前的HDCA标准化活动考虑了一个称为WaSP的框架,该框架分层预测视图,在每个预测步骤的参考视图上独立合成所需的视差图。一个潜在的更好的方法是逐步构建一个统一的多层基本模型,以便在许多视图中进行一致的视差综合。本文在现有基础模型方法的基础上进行了显著改进,表现出优于WaSP的性能。更一般地,本文探讨了纹理翘曲和视差合成方法的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Delivery of Very High Dynamic Range Compressed Imagery by Dynamic-Range-of-Interest Novel Coding Tools Based on Characteristics for Short Videos Extending Video Decoding Energy Models for 360° and HDR Video Formats in HEVC Generalized binary splits: A versatile partitioning scheme for block-based hybrid video coding An IBP-CNN Based Fast Block Partition For Intra Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1