Nonlinear network reduction for distribution networks using the holomorphic embedding method

Shruti Rao, D. Tylavsky
{"title":"Nonlinear network reduction for distribution networks using the holomorphic embedding method","authors":"Shruti Rao, D. Tylavsky","doi":"10.1109/NAPS.2016.7747978","DOIUrl":null,"url":null,"abstract":"This paper presents three different true nonlinear reduction methods to obtain network equivalents for radial (distribution-type) networks (using the holomorphically embedded power flow algorithm), which are exact, given computational precision limitations, even when the loads and the real-power generations are scaled. The proposed reduction methods are applied in this paper to reduce a radial distribution system and provide a two-bus-model equivalent which accurately models the real and reactive power load seen at the transmission network due to random changes in the distribution system load. Numerical results are provided for a radial 14-bus system to show the accuracy of the proposed methods in preserving voltages and slack bus power. The approach is shown to have better performance than Ward reduction even when the loads are increased in a random manner.","PeriodicalId":249041,"journal":{"name":"2016 North American Power Symposium (NAPS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2016.7747978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper presents three different true nonlinear reduction methods to obtain network equivalents for radial (distribution-type) networks (using the holomorphically embedded power flow algorithm), which are exact, given computational precision limitations, even when the loads and the real-power generations are scaled. The proposed reduction methods are applied in this paper to reduce a radial distribution system and provide a two-bus-model equivalent which accurately models the real and reactive power load seen at the transmission network due to random changes in the distribution system load. Numerical results are provided for a radial 14-bus system to show the accuracy of the proposed methods in preserving voltages and slack bus power. The approach is shown to have better performance than Ward reduction even when the loads are increased in a random manner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全纯嵌入法的配电网络非线性网络约简
本文提出了三种不同的真非线性约简方法(使用全纯嵌入式潮流算法)来获得径向(分布型)网络的网络当量,即使在负载和实际功率世代按比例缩放时,它们在计算精度限制下也是精确的。本文将所提出的约简方法应用于一个径向配电系统,并提供了一个双母线等效模型,该模型准确地模拟了由于配电系统负荷的随机变化而在输电网中看到的真实负荷和无功负荷。最后给出了一个径向14总线系统的数值结果,证明了所提方法在保持电压和母线功率松弛方面的准确性。结果表明,即使负载随机增加,该方法也比Ward reduction方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving advanced inverter control convergence in distribution power flow A statistical analysis of the economic drivers of battery energy storage in commercial buildings Stealthy cyber attacks and impact analysis on wide-area protection of smart grid Modeling and optimal scheduling of integrated thermal and electrical energy microgrid Energy management and peak-shaving in grid-connected photovoltaic systems integrated with battery storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1