A multi-net local learning framework for pattern recognition

Jian-xiong Dong, A. Krzyżak, C. Suen
{"title":"A multi-net local learning framework for pattern recognition","authors":"Jian-xiong Dong, A. Krzyżak, C. Suen","doi":"10.1109/ICDAR.2001.953808","DOIUrl":null,"url":null,"abstract":"This paper proposes a general local learning framework to effectively alleviate the complexities of classifier design by means of \"divide and conquer\" principle and ensemble method. The learning framework consists of quantization layer and ensemble layer. After GLVQ and MLP are applied to the framework, the proposed method is tested on MNIST handwritten digit database. The obtained performance is very promising, an error rate with 0.99%, which is comparable to that of LeNet5, one of the best classifiers on this database. Further, in contrast to LeNet5, our method is especially suitable for a large-scale real-world classification problem.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper proposes a general local learning framework to effectively alleviate the complexities of classifier design by means of "divide and conquer" principle and ensemble method. The learning framework consists of quantization layer and ensemble layer. After GLVQ and MLP are applied to the framework, the proposed method is tested on MNIST handwritten digit database. The obtained performance is very promising, an error rate with 0.99%, which is comparable to that of LeNet5, one of the best classifiers on this database. Further, in contrast to LeNet5, our method is especially suitable for a large-scale real-world classification problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模式识别的多网络局部学习框架
本文提出了一种通用的局部学习框架,通过“分而治之”原则和集成方法有效地缓解了分类器设计的复杂性。学习框架由量化层和集成层组成。将GLVQ和MLP应用于该框架后,在MNIST手写体数字数据库上进行了测试。获得的性能非常有希望,错误率为0.99%,与该数据库中最好的分类器之一LeNet5相当。此外,与LeNet5相比,我们的方法特别适合于大规模的现实世界分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1