Classification of Patients Using Novel Multivariate Time Series Representations of Physiological Data

Patricia Ordóñez, T. Armstrong, T. Oates, J. Fackler
{"title":"Classification of Patients Using Novel Multivariate Time Series Representations of Physiological Data","authors":"Patricia Ordóñez, T. Armstrong, T. Oates, J. Fackler","doi":"10.1109/ICMLA.2011.46","DOIUrl":null,"url":null,"abstract":"In this paper we present two novel multivariate time series representations to classify physiological data of different lengths. The representations may be applied to any group of multivariate time series data that examine the state or health of an entity. Multivariate Bag-of-Patterns and Stacked Bags of-Patterns improve on their univariate counterpart, inspired by the bag-of-words model, by using multiple time series and analyzing the data in a multivariate fashion. We also borrow techniques from the natural language processing domain such as term frequency and inverse document frequency to improve classification accuracy. We introduce a technique named inverse frequency and present experimental results on classifying patients who have experienced acute episodes of hypotension.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we present two novel multivariate time series representations to classify physiological data of different lengths. The representations may be applied to any group of multivariate time series data that examine the state or health of an entity. Multivariate Bag-of-Patterns and Stacked Bags of-Patterns improve on their univariate counterpart, inspired by the bag-of-words model, by using multiple time series and analyzing the data in a multivariate fashion. We also borrow techniques from the natural language processing domain such as term frequency and inverse document frequency to improve classification accuracy. We introduce a technique named inverse frequency and present experimental results on classifying patients who have experienced acute episodes of hypotension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用新的多变量时间序列表示生理数据的患者分类
本文提出了两种新的多元时间序列表示来对不同长度的生理数据进行分类。表示可以应用于检查实体状态或运行状况的任何多变量时间序列数据组。受词袋模型的启发,通过使用多个时间序列并以多变量方式分析数据,多元袋模式和叠袋模式改进了单变量模式。我们还借鉴了自然语言处理领域的术语频率和逆文档频率等技术来提高分类精度。我们介绍了一种称为逆频率的技术,并给出了对急性低血压发作患者进行分类的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Mining Approach to Travel Price Forecasting L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration Speech Rating System through Space Mapping Kernel Methods for Minimum Entropy Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1