Neural fuzzy adaptive control for mobile smart objects

M. Butakova, A. Chernov, Petr S. Shevchuk, V. Vereskun
{"title":"Neural fuzzy adaptive control for mobile smart objects","authors":"M. Butakova, A. Chernov, Petr S. Shevchuk, V. Vereskun","doi":"10.1109/ISCE.2018.8408914","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the neural fuzzy adaptive control system suited for mobile smart objects. The classification of hybrid neural networks based on fuzzy neuron models is presented. The hybrid adaptive system architecture consisting of triple neural networks is proposed. Fuzzifying process with rules database creation and fuzzy membership functions definitions are considered. Also learning experiments with proposed architecture have been implemented.","PeriodicalId":114660,"journal":{"name":"2018 International Symposium on Consumer Technologies (ISCT)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Consumer Technologies (ISCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2018.8408914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose the neural fuzzy adaptive control system suited for mobile smart objects. The classification of hybrid neural networks based on fuzzy neuron models is presented. The hybrid adaptive system architecture consisting of triple neural networks is proposed. Fuzzifying process with rules database creation and fuzzy membership functions definitions are considered. Also learning experiments with proposed architecture have been implemented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动智能对象的神经模糊自适应控制
本文提出了一种适用于移动智能物体的神经模糊自适应控制系统。提出了基于模糊神经元模型的混合神经网络分类方法。提出了由三重神经网络组成的混合自适应系统结构。考虑了规则的模糊化过程、数据库的创建和模糊隶属函数的定义。此外,还实现了基于所提出架构的学习实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using MATLAB as auxiliary tool in visual localization for mobile robots Real-time image magnifier with visible-spectrum gaze tracker Low-cost real-time non-intrusive appliance identification and controlling through machine learning algorithm Adaptive edge detection algorithm for multi-focus application The bootstrap Kernel-diffeomorphism filter for satellite image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1