Improving Local History Match Using Machine Learning Generated Regions from Production Response and Geological Parameter Correlations

T. Buckle, R. Hutton, V. Demyanov, D. Arnold, A. Antropov, E. Kharyba, M. Pilipenko, L. Stulov
{"title":"Improving Local History Match Using Machine Learning Generated Regions from Production Response and Geological Parameter Correlations","authors":"T. Buckle, R. Hutton, V. Demyanov, D. Arnold, A. Antropov, E. Kharyba, M. Pilipenko, L. Stulov","doi":"10.3997/2214-4609.201902203","DOIUrl":null,"url":null,"abstract":"Summary We present a data driven workflow to improve local history match quality by identifying model regions from correlation between production response and geological modelling parameters for use in an assisted history matching framework. This paper outlines the implementation and results from a large mature field case study. Regions are identified by calculating the partial correlation between individual well production misfits and uncertain geological modelling parameters across 500 models. Wells are then categorised into three groups based on their correlations: positive, negative and insignificant. A probabilistic neural network (PNN) is trained on the location of each well and its group. A map of regions can then be calculated using the PNN. The parameters used to define the region map are then varied separately in each region in an assisted history matching loop. In the full field case study, an 8.8% improvement in oil rate misfit within the positively correlated well group was achieved by regional modification of the net-to-gross multiplier, with no detrimental effect on the other groups match quality. This case study demonstrates the effective identification and utilisation of geologically and dynamically inferred regions which improve the local history match","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Summary We present a data driven workflow to improve local history match quality by identifying model regions from correlation between production response and geological modelling parameters for use in an assisted history matching framework. This paper outlines the implementation and results from a large mature field case study. Regions are identified by calculating the partial correlation between individual well production misfits and uncertain geological modelling parameters across 500 models. Wells are then categorised into three groups based on their correlations: positive, negative and insignificant. A probabilistic neural network (PNN) is trained on the location of each well and its group. A map of regions can then be calculated using the PNN. The parameters used to define the region map are then varied separately in each region in an assisted history matching loop. In the full field case study, an 8.8% improvement in oil rate misfit within the positively correlated well group was achieved by regional modification of the net-to-gross multiplier, with no detrimental effect on the other groups match quality. This case study demonstrates the effective identification and utilisation of geologically and dynamically inferred regions which improve the local history match
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习从生产响应和地质参数相关性生成区域,改进本地历史匹配
我们提出了一个数据驱动的工作流程,通过在辅助历史匹配框架中使用生产响应和地质建模参数之间的相关性来识别模型区域,从而提高本地历史匹配质量。本文概述了一个大型成熟油田案例研究的实施和结果。通过计算500个模型中单井生产失拟和不确定地质建模参数之间的偏相关性来识别区域。然后根据油井的相关性将其分为三组:正相关性、负相关性和不相关性。在每口井及其组的位置上训练概率神经网络(PNN)。然后可以使用PNN计算区域地图。然后,在辅助历史匹配循环中,用于定义区域映射的参数在每个区域中分别变化。在整个油田的案例研究中,通过对净/总乘数的区域调整,正相关井组内的产油率错配改善了8.8%,而对其他组的匹配质量没有不利影响。该案例研究证明了地质和动态推断区域的有效识别和利用,从而提高了局部历史匹配
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forward Model Applied to Channelized Turbidite Systems: A Case Study of the Benin Major Valley Fill Stochastic Seismic Inversion Based on a Fuzzy Model A Bayesian Approach for Full-waveform Inversion Using Wide-aperture Seismic Data Ensemble-based Kernel Learning to Handle Rock-physics-model Imperfection in Seismic History Matching: A Real Field Case Study Features of Factor Models in Seismic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1