Refining data flow information using infeasible paths

R. Bodík, Rajiv Gupta, M. Soffa
{"title":"Refining data flow information using infeasible paths","authors":"R. Bodík, Rajiv Gupta, M. Soffa","doi":"10.1145/267895.267921","DOIUrl":null,"url":null,"abstract":"Experimental evidence indicates that large programs exhibit significant amount of branch correlation amenable to compile-time detection. Branch correlation gives rise to infeasible paths, which in turn make data flow information overly conservative. For example, def-use pairs that always span infeasible paths cannot be tested by any program input, preventing 100% def-use testing coverage. We present an algorithm for identifying infeasible program paths and a data flow analysis technique that improves the precision of traditional def-use pair analysis by incorporating the information about infeasible paths into the analysis. Infeasible paths are computed using branch correlation analysis, which can be performed either intra- or inter-procedurally. The efficiency of our technique is achieved through demand-driven formulation of both the infeasible paths detection and the def-use pair analysis. Our experiments indicate that even when a simple form of intraprocedural branch correlation is considered, more than 2% of def-use pairs in the SPEC95 benchmark programs can be found infeasible.","PeriodicalId":297962,"journal":{"name":"ESEC '97/FSE-5","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESEC '97/FSE-5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/267895.267921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

Abstract

Experimental evidence indicates that large programs exhibit significant amount of branch correlation amenable to compile-time detection. Branch correlation gives rise to infeasible paths, which in turn make data flow information overly conservative. For example, def-use pairs that always span infeasible paths cannot be tested by any program input, preventing 100% def-use testing coverage. We present an algorithm for identifying infeasible program paths and a data flow analysis technique that improves the precision of traditional def-use pair analysis by incorporating the information about infeasible paths into the analysis. Infeasible paths are computed using branch correlation analysis, which can be performed either intra- or inter-procedurally. The efficiency of our technique is achieved through demand-driven formulation of both the infeasible paths detection and the def-use pair analysis. Our experiments indicate that even when a simple form of intraprocedural branch correlation is considered, more than 2% of def-use pairs in the SPEC95 benchmark programs can be found infeasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用不可行的路径精炼数据流信息
实验证据表明,大型程序显示出大量的分支相关性,可以进行编译时检测。分支关联会产生不可行的路径,从而使数据流信息过于保守。例如,总是跨越不可行的路径的定义-使用对不能被任何程序输入测试,从而阻止了100%的定义-使用测试覆盖率。我们提出了一种识别不可行程序路径的算法和一种数据流分析技术,通过将不可行路径信息纳入分析,提高了传统的defuse pair分析的精度。不可行路径的计算使用分支相关分析,这可以在程序内或程序间执行。我们的技术效率是通过需求驱动的不可行路径检测和非使用对分析来实现的。我们的实验表明,即使考虑到程序内分支相关的简单形式,也可以发现SPEC95基准程序中超过2%的非使用对是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Change management needs integrated process and configuration management The use of program profiling for software maintenance with applications to the year 2000 problem Towards an adaptation of the COCOMO cost model to the software measurement theory Experiences with criticality predictions in software development A design framework for Internet-scale event observation and notification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1