{"title":"Towards Fine-grained Recognition: Joint Learning for Object Detection and Fine-grained Classification","authors":"Qiaosong Wang, C. Rasmussen","doi":"10.2139/ssrn.3499468","DOIUrl":null,"url":null,"abstract":"Fine-grained classification is a challenging problem due to subtle differences between intra-class categories. In practice, fine-grained classification is often used in conjunction with object detection algorithms to locate and identify object categories. Despite recent achievements in both fine-grained classification and object detection, few works have demonstrated datasets or solutions to simultaneously handle both tasks. We make two contributions to this problem. Firstly, we construct a fine-grained classification and detection benchmark. Secondly, we show an end-to-end convolutional neural networks (CNNs) architecture to detect and classify fine-grained objects. Experimental results verify that our networks perform favorably against alternatives.","PeriodicalId":129448,"journal":{"name":"Cognitive Psychology eJournal","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Psychology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3499468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fine-grained classification is a challenging problem due to subtle differences between intra-class categories. In practice, fine-grained classification is often used in conjunction with object detection algorithms to locate and identify object categories. Despite recent achievements in both fine-grained classification and object detection, few works have demonstrated datasets or solutions to simultaneously handle both tasks. We make two contributions to this problem. Firstly, we construct a fine-grained classification and detection benchmark. Secondly, we show an end-to-end convolutional neural networks (CNNs) architecture to detect and classify fine-grained objects. Experimental results verify that our networks perform favorably against alternatives.