J. Selga, F. Aznar, A. Vélez, M. Gil, J. Bonache, F. Martín
{"title":"Low-pass and high-pass microwave filters with transmission zero based on metamaterial concepts","authors":"J. Selga, F. Aznar, A. Vélez, M. Gil, J. Bonache, F. Martín","doi":"10.1109/IWAT.2009.4906914","DOIUrl":null,"url":null,"abstract":"In this work, highly selective filters based on periodic arrays of electrically small resonators are pointed out. The high-pass filters are implemented in microstrip technology by etching complementary split ring resonators (CSRRs), or complementary spiral resonators (CSRs), in the ground plane, and series capacitive gaps, or interdigital capacitors, in the signal strip. The structure exhibits a composite right/left handed (CRLH) behavior and, by properly tuning the geometry of the elements, a high pass response with a sharp transition band is obtained. The low-pass filters, also implemented in microstrip technology, are designed by cascading open complementary split ring resonators (OCSRRs) in the signal strip. These low pass filters do also exhibit a narrow transition band. The high selectivity of these microwave filters is due to the presence of a transmission zero. Since the resonant elements are small, filter dimensions are compact. Several prototype device examples are reported in this paper.","PeriodicalId":166472,"journal":{"name":"2009 IEEE International Workshop on Antenna Technology","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Antenna Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2009.4906914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this work, highly selective filters based on periodic arrays of electrically small resonators are pointed out. The high-pass filters are implemented in microstrip technology by etching complementary split ring resonators (CSRRs), or complementary spiral resonators (CSRs), in the ground plane, and series capacitive gaps, or interdigital capacitors, in the signal strip. The structure exhibits a composite right/left handed (CRLH) behavior and, by properly tuning the geometry of the elements, a high pass response with a sharp transition band is obtained. The low-pass filters, also implemented in microstrip technology, are designed by cascading open complementary split ring resonators (OCSRRs) in the signal strip. These low pass filters do also exhibit a narrow transition band. The high selectivity of these microwave filters is due to the presence of a transmission zero. Since the resonant elements are small, filter dimensions are compact. Several prototype device examples are reported in this paper.