Re-Training StyleGAN - A First Step Towards Building Large, Scalable Synthetic Facial Datasets

Viktor Varkarakis, S. Bazrafkan, P. Corcoran
{"title":"Re-Training StyleGAN - A First Step Towards Building Large, Scalable Synthetic Facial Datasets","authors":"Viktor Varkarakis, S. Bazrafkan, P. Corcoran","doi":"10.1109/ISSC49989.2020.9180189","DOIUrl":null,"url":null,"abstract":"StyleGAN is a state-of-art generative adversarial network architecture that generates random 2D high-quality synthetic facial data samples. In this paper we recap the StyleGAN architecture and training methodology and present our experiences of retraining it on a number of alternative public datasets. Practical issues and challenges arising from the retraining process are discussed. Tests and validation results are presented and a comparative analysis of several different re-trained StyleGAN weightings is provided. The role of this tool in building large, scalable datasets of synthetic facial data is also discussed.","PeriodicalId":351013,"journal":{"name":"2020 31st Irish Signals and Systems Conference (ISSC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC49989.2020.9180189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

StyleGAN is a state-of-art generative adversarial network architecture that generates random 2D high-quality synthetic facial data samples. In this paper we recap the StyleGAN architecture and training methodology and present our experiences of retraining it on a number of alternative public datasets. Practical issues and challenges arising from the retraining process are discussed. Tests and validation results are presented and a comparative analysis of several different re-trained StyleGAN weightings is provided. The role of this tool in building large, scalable datasets of synthetic facial data is also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新训练StyleGAN -迈向构建大型,可扩展的合成面部数据集的第一步
StyleGAN是一种最先进的生成对抗网络架构,可以生成随机的2D高质量合成面部数据样本。在本文中,我们概述了StyleGAN的架构和训练方法,并介绍了我们在一些可供选择的公共数据集上对其进行再训练的经验。讨论了再培训过程中出现的实际问题和挑战。给出了测试和验证结果,并对几种不同的重新训练的StyleGAN权重进行了比较分析。本文还讨论了该工具在构建大型、可扩展的合成面部数据集中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Intra-Subject Variation in Gait Analysis on ASD Classification Performance in Machine Learning Models Practical Implementation of APTs on PTP Time Synchronisation Networks Not Everything You Read Is True! Fake News Detection using Machine learning Algorithms Semi-Supervised Learning with Generative Adversarial Networks for Pathological Speech Classification Reduced Complexity Approach for Uplink Rate Trajectory Prediction in Mobile Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1