Low-Complexity Detection of Uplink NOMA by Exploiting Properties of the Propagation Channel

Bashar Tahir, Stefan Schwarz, M. Rupp
{"title":"Low-Complexity Detection of Uplink NOMA by Exploiting Properties of the Propagation Channel","authors":"Bashar Tahir, Stefan Schwarz, M. Rupp","doi":"10.1109/icc40277.2020.9149154","DOIUrl":null,"url":null,"abstract":"Uplink non-orthogonal multiple access (NOMA) has been proposed as an efficient technique to support massive connectivity and reduce access-latency. However, due to the inherent multiuser interference within such a system, iterative joint detection is required, which is of high-complexity. In this paper, we exploit the propagation properties of wireless channels to reduce the detection complexity. In particular, when neighboring spreading-blocks on the time-frequency grid experience similar channel conditions, then it is possible to reuse the calculated filter weights between them. We propose four detection strategies and compare them across a wide range of time- and frequency-selectively. Then, assuming the base station is equipped with a sufficient number of antennas, we replace the MMSE filter with a lower-complexity approximation using Neumann series expansion. The results show that our strategies incur only a small performance loss, while substantially cutting down complexity.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icc40277.2020.9149154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Uplink non-orthogonal multiple access (NOMA) has been proposed as an efficient technique to support massive connectivity and reduce access-latency. However, due to the inherent multiuser interference within such a system, iterative joint detection is required, which is of high-complexity. In this paper, we exploit the propagation properties of wireless channels to reduce the detection complexity. In particular, when neighboring spreading-blocks on the time-frequency grid experience similar channel conditions, then it is possible to reuse the calculated filter weights between them. We propose four detection strategies and compare them across a wide range of time- and frequency-selectively. Then, assuming the base station is equipped with a sufficient number of antennas, we replace the MMSE filter with a lower-complexity approximation using Neumann series expansion. The results show that our strategies incur only a small performance loss, while substantially cutting down complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用传播信道特性的上行NOMA低复杂度检测
上行链路非正交多址(NOMA)是一种支持海量连接和降低访问延迟的有效技术。但由于该系统存在固有的多用户干扰,需要进行迭代联合检测,复杂度较高。在本文中,我们利用无线信道的传播特性来降低检测复杂度。特别是,当相邻时频网格上的扩展块经历相似的信道条件时,可以在它们之间重用计算出的滤波器权重。我们提出了四种检测策略,并在广泛的时间和频率选择性范围内对它们进行了比较。然后,假设基站配备了足够数量的天线,我们使用诺伊曼级数展开将MMSE滤波器替换为更低复杂度的近似。结果表明,我们的策略只产生很小的性能损失,同时大大降低了复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full Duplex MIMO Digital Beamforming with Reduced Complexity AUXTX Analog Cancellation Cognitive Management and Control of Optical Networks in Dynamic Environments Offloading Media Traffic to Programmable Data Plane Switches Simultaneous Transmitting and Air Computing for High-Speed Point-to-Point Wireless Communication A YouTube Dataset with User-level Usage Data: Baseline Characteristics and Key Insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1