Gain-ratio-Based Selective classifiers for incomplete data

Jingnian Chen, Shujun Fu, Taorong Qiu
{"title":"Gain-ratio-Based Selective classifiers for incomplete data","authors":"Jingnian Chen, Shujun Fu, Taorong Qiu","doi":"10.1109/GRC.2009.5255162","DOIUrl":null,"url":null,"abstract":"By deleting irrelevant or redundant attributes of a data set, selective classifiers can effectively improve the accuracy and efficiency of classification. Though many selective classifiers have been proposed, most of them deal with complete data. Yet actual data sets are often incomplete and have many redundant or irrelevant attributes. So constructing selective classifiers for incomplete data is important. With former work and Information gain ratio, a hybrid selective classifier for incomplete data, denoted as GBSD, is presented. Experiment results on twelve benchmark incomplete data sets show that GBSD can effectively improve the accuracy and efficiency of classification while enormously reducing the number of attributes.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

By deleting irrelevant or redundant attributes of a data set, selective classifiers can effectively improve the accuracy and efficiency of classification. Though many selective classifiers have been proposed, most of them deal with complete data. Yet actual data sets are often incomplete and have many redundant or irrelevant attributes. So constructing selective classifiers for incomplete data is important. With former work and Information gain ratio, a hybrid selective classifier for incomplete data, denoted as GBSD, is presented. Experiment results on twelve benchmark incomplete data sets show that GBSD can effectively improve the accuracy and efficiency of classification while enormously reducing the number of attributes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增益比的不完整数据选择分类器
选择性分类器通过删除数据集中不相关或冗余的属性,可以有效地提高分类的准确性和效率。虽然已经提出了许多选择性分类器,但大多数都是处理完整数据的。然而,实际的数据集往往是不完整的,并且有许多冗余或不相关的属性。因此,为不完整数据构建选择性分类器是非常重要的。在原有工作和信息增益比的基础上,提出了一种不完全数据的混合选择分类器GBSD。在12个基准不完全数据集上的实验结果表明,GBSD在极大地减少属性数量的同时,能有效地提高分类的准确率和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On SP-closedness in L-topological spaces A comprehensive evaluation method based on extenics and rough set A two-step approach for solving the flexible job shop scheduling problem A fast and accurate collaborative filter Attribute Grid Computer based on Qualitative Mapping and its application in pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1