Industry Distress and Default Recovery Rates: The Unconditional Quantile Regression Approach

Hui-Ching Chuang, Jau‐er Chen
{"title":"Industry Distress and Default Recovery Rates: The Unconditional Quantile Regression Approach","authors":"Hui-Ching Chuang, Jau‐er Chen","doi":"10.2139/ssrn.3473161","DOIUrl":null,"url":null,"abstract":"In this study, we estimate the effect of industry distress on recovery rates by using the unconditional quantile regression (UQR) proposed in Firpo, Fortin, and Lemieux (2009). The UQR provides better interpretative and thus policy-relevant information on the marginal effect of the covariates than the conditional quantile regression (CQR, Koenker and Bassett, 1978). To deal with a broad set of macroeconomic and industry variables, we use the LASSO-based double selection to identify the effects of industry distress and select variables.Our sample consists of 5,334 debt and loan instruments in Moody's Default and Recovery Database from 1990 to 2017. The results show that industry distress decreases recovery rates from 15.80% to 2.94% for the 15th to 55th percentile range and slightly increases the recovery rates in the lower and the upper tails. In contrast to the CQR, the UQR provide quantitative measurements to the loss given default during a downturn that the Basel Capital Accord requires.","PeriodicalId":375725,"journal":{"name":"SPGMI: Capital IQ Data (Topic)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPGMI: Capital IQ Data (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3473161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we estimate the effect of industry distress on recovery rates by using the unconditional quantile regression (UQR) proposed in Firpo, Fortin, and Lemieux (2009). The UQR provides better interpretative and thus policy-relevant information on the marginal effect of the covariates than the conditional quantile regression (CQR, Koenker and Bassett, 1978). To deal with a broad set of macroeconomic and industry variables, we use the LASSO-based double selection to identify the effects of industry distress and select variables.Our sample consists of 5,334 debt and loan instruments in Moody's Default and Recovery Database from 1990 to 2017. The results show that industry distress decreases recovery rates from 15.80% to 2.94% for the 15th to 55th percentile range and slightly increases the recovery rates in the lower and the upper tails. In contrast to the CQR, the UQR provide quantitative measurements to the loss given default during a downturn that the Basel Capital Accord requires.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行业困境与违约回收率:无条件分位数回归方法
在本研究中,我们使用Firpo、Fortin和Lemieux(2009)提出的无条件分位数回归(UQR)来估计行业困境对回收率的影响。与条件分位数回归(CQR, Koenker和Bassett, 1978)相比,UQR可以更好地解释协变量的边际效应,从而提供与政策相关的信息。为了处理广泛的宏观经济和行业变量,我们使用基于lasso的双重选择来识别行业困境的影响并选择变量。我们的样本包括穆迪违约和回收数据库中1990年至2017年的5334种债务和贷款工具。结果表明,在第15 ~ 55个百分位范围内,行业困境使回收率从15.80%降低到2.94%,并使下尾和上尾的回收率略有提高。与CQR相比,UQR提供了《巴塞尔资本协议》(Basel Capital Accord)所要求的经济衰退期间违约损失的量化衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Why Is a CCP Failure Very Unlikely? Does Shareholder Litigation Risk Cause Public Firms to Delist? Evidence From Securities Class Action Lawsuits How Do Institutional Investors React to Geographically Dispersed Information Shocks? A Test Using the COVID-19 Pandemic Disequilibrium Propagation of Quantity Constraints: Application to the COVID Lockdowns A Green Wave in Media, a Change of Tack in Stock Markets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1