{"title":"Klasifikasi Jenis Aglaonema Berdasarkan Citra Daun Menggunakan Convolutional Neural Network (CNN)","authors":"Yoga Purna Irawan, Indah Susilawati","doi":"10.26486/jisai.v2i2.57","DOIUrl":null,"url":null,"abstract":"Tanaman aglaonema atau yang di Indonesia populer dikenal dengan nama “Sri Rejeki” adalah tanaman hias daun yang sangat digemari oleh banyak orang. Tanaman ini memiliki keunikan yang terletak pada daunnya yang memiliki bentuk, warna dan corak yang indah dan beraneka ragam. Identifikasi tanaman aglaonema ini dapat dilakukan dengan berbagai macam cara, salah satunya dengan teknik pengolahan citra dimana proses didalamnya dilakukan ekstraksi ciri maupun dengan proses klasifikasi. Salah satu metode / algoritma yang dapat dilakukan untuk melakukan klasifikasi citra aglaonema ini adalah Convolutional Neural Network (CNN). CNN merupakan salah satu algoritma dari Deep Learning dan merupakan pengembangan dari Multi Layer Perceptron (MLP). Penelitian ini menggunakan citra 5 jenis daun aglaonema, dengan jumlah citra masing-masing tiap jenisnya adalah 100 citra. Model CNN yang dipakai dalam penelitian ini adalah model Alexnet. Berdasarkan 4 percobaan menggunakan optimizer serta konfigurasi nilai epoch yang berbeda-beda, diperoleh nilai akurasi validasi training tertinggi yakni sebesar 98,00 %. Sistem yang dibangun juga dapat mengklasifikasikan citra aglaonema dengan baik, dengan tingkat keberhasilan akurasi sebesar 96% dari 50 citra yang diuji.","PeriodicalId":431246,"journal":{"name":"Journal Of Information System And Artificial Intelligence","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Information System And Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26486/jisai.v2i2.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Tanaman aglaonema atau yang di Indonesia populer dikenal dengan nama “Sri Rejeki” adalah tanaman hias daun yang sangat digemari oleh banyak orang. Tanaman ini memiliki keunikan yang terletak pada daunnya yang memiliki bentuk, warna dan corak yang indah dan beraneka ragam. Identifikasi tanaman aglaonema ini dapat dilakukan dengan berbagai macam cara, salah satunya dengan teknik pengolahan citra dimana proses didalamnya dilakukan ekstraksi ciri maupun dengan proses klasifikasi. Salah satu metode / algoritma yang dapat dilakukan untuk melakukan klasifikasi citra aglaonema ini adalah Convolutional Neural Network (CNN). CNN merupakan salah satu algoritma dari Deep Learning dan merupakan pengembangan dari Multi Layer Perceptron (MLP). Penelitian ini menggunakan citra 5 jenis daun aglaonema, dengan jumlah citra masing-masing tiap jenisnya adalah 100 citra. Model CNN yang dipakai dalam penelitian ini adalah model Alexnet. Berdasarkan 4 percobaan menggunakan optimizer serta konfigurasi nilai epoch yang berbeda-beda, diperoleh nilai akurasi validasi training tertinggi yakni sebesar 98,00 %. Sistem yang dibangun juga dapat mengklasifikasikan citra aglaonema dengan baik, dengan tingkat keberhasilan akurasi sebesar 96% dari 50 citra yang diuji.