On the Scalability of 1- and 2-Dimensional SIMD Extensions for Multimedia Applications

Friman Sánchez, M. Alvarez, E. Salamí, Alex Ramírez, M. Valero
{"title":"On the Scalability of 1- and 2-Dimensional SIMD Extensions for Multimedia Applications","authors":"Friman Sánchez, M. Alvarez, E. Salamí, Alex Ramírez, M. Valero","doi":"10.1109/ISPASS.2005.1430571","DOIUrl":null,"url":null,"abstract":"SIMD extensions are the most common technique used in current processors for multimedia computing. In order to obtain more performance for emerging applications SIMD extensions need to be scaled. In this paper we perform a scalability analysis of SIMD extensions for multimedia applications. Scaling a 1-dimensional extension, like Intel MMX, was compared to scaling a 2-dimensional (matrix) extension. Evaluations have demonstrated that the 2-d architecture is able to use more parallel hardware than the 1-d extension. Speed-ups over a 2-way superscalar processor with MMX-like extension go up to 4X for kernels and up to 3.3X for complete applications and the matrix architecture can deliver, in some cases, more performance with simpler processor configurations. The experiments also show that the scaled matrix architecture is reaching the limits of the DLP available in the internal loops of common multimedia kernels","PeriodicalId":230669,"journal":{"name":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","volume":"1 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2005.1430571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

SIMD extensions are the most common technique used in current processors for multimedia computing. In order to obtain more performance for emerging applications SIMD extensions need to be scaled. In this paper we perform a scalability analysis of SIMD extensions for multimedia applications. Scaling a 1-dimensional extension, like Intel MMX, was compared to scaling a 2-dimensional (matrix) extension. Evaluations have demonstrated that the 2-d architecture is able to use more parallel hardware than the 1-d extension. Speed-ups over a 2-way superscalar processor with MMX-like extension go up to 4X for kernels and up to 3.3X for complete applications and the matrix architecture can deliver, in some cases, more performance with simpler processor configurations. The experiments also show that the scaled matrix architecture is reaching the limits of the DLP available in the internal loops of common multimedia kernels
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多媒体应用中一维和二维SIMD扩展的可扩展性
SIMD扩展是当前用于多媒体计算的处理器中最常用的技术。为了获得新兴应用程序的更高性能,需要对SIMD扩展进行缩放。本文对多媒体应用的SIMD扩展进行了可扩展性分析。缩放一维扩展(如Intel MMX)与缩放二维(矩阵)扩展进行了比较。评估表明,二维架构能够使用比一维扩展更多的并行硬件。在具有类似mmx扩展的双向超标量处理器上,内核的加速可达4倍,完整应用程序的加速可达3.3倍,在某些情况下,矩阵架构可以通过更简单的处理器配置提供更高的性能。实验还表明,缩放矩阵结构达到了普通多媒体内核内部循环的DLP极限
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power-Performance Implications of Thread-level Parallelism on Chip Multiprocessors Performance Analysis of a New Packet Trace Compressor based on TCP Flow Clustering Enhancing Multiprocessor Architecture Simulation Speed Using Matched-Pair Comparison A High Performance, Energy Efficient GALS ProcessorMicroarchitecture with Reduced Implementation Complexity Dataflow: A Complement to Superscalar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1