Outlier detection using semantic sensors

D. Skillicorn
{"title":"Outlier detection using semantic sensors","authors":"D. Skillicorn","doi":"10.1109/ISI.2012.6284089","DOIUrl":null,"url":null,"abstract":"We describe a technique that calculates the expected relationships among attributes from training data, and uses this to generate anomaly scores reflecting the intuition that a record with anomalous values for related attributes is more anomalous than one with anomalous values for unrelated attributes. The expected relations among attributes are calculated in two ways: using a data-dependent projection via singular value decomposition, and using the maximal information coefficient. Sufficiently anomalous records are displayed on a sensor dashboard, making it possible for an analyst to judge why each record has been classified as anomalous. The technique is illustrated for an intrusion detection dataset, and a set of contract descriptors.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We describe a technique that calculates the expected relationships among attributes from training data, and uses this to generate anomaly scores reflecting the intuition that a record with anomalous values for related attributes is more anomalous than one with anomalous values for unrelated attributes. The expected relations among attributes are calculated in two ways: using a data-dependent projection via singular value decomposition, and using the maximal information coefficient. Sufficiently anomalous records are displayed on a sensor dashboard, making it possible for an analyst to judge why each record has been classified as anomalous. The technique is illustrated for an intrusion detection dataset, and a set of contract descriptors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用语义传感器的异常值检测
我们描述了一种从训练数据中计算属性之间的预期关系的技术,并使用它来生成异常分数,反映了相关属性的异常值的记录比不相关属性的异常值的记录更异常的直觉。通过奇异值分解的数据依赖投影和最大信息系数两种方法计算属性之间的期望关系。在传感器仪表板上显示足够多的异常记录,使分析人员能够判断为什么每个记录被归类为异常。该技术用于入侵检测数据集和一组契约描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting criminal networks: SNA models are compared to proprietary models Securing cyberspace: Identifying key actors in hacker communities Emergency decision support using an agent-based modeling approach Payment card fraud: Challenges and solutions Extracting action knowledge in security informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1