Image annotation with parametric mixture model based multi-class multi-labeling

Zhiyong Wang, W. Siu, D. Feng
{"title":"Image annotation with parametric mixture model based multi-class multi-labeling","authors":"Zhiyong Wang, W. Siu, D. Feng","doi":"10.1109/MMSP.2008.4665153","DOIUrl":null,"url":null,"abstract":"Image annotation, which labels an image with a set of semantic terms so as to bridge the semantic gap between low level features and high level semantics in visual information retrieval, is generally posed as a classification problem. Recently, multi-label classification has been investigated for image annotation since an image presents rich contents and can be associated with multiple concepts (i.e. labels). In this paper, a parametric mixture model based multi-class multi-labeling approach is proposed to tackle image annotation. Instead of building classifiers to learn individual labels exclusively, we model images with parametric mixture models so that the mixture characteristics of labels can be simultaneously exploited in both training and annotation processes. Our proposed method has been benchmarked with several state-of-the-art methods and achieved promising results.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Image annotation, which labels an image with a set of semantic terms so as to bridge the semantic gap between low level features and high level semantics in visual information retrieval, is generally posed as a classification problem. Recently, multi-label classification has been investigated for image annotation since an image presents rich contents and can be associated with multiple concepts (i.e. labels). In this paper, a parametric mixture model based multi-class multi-labeling approach is proposed to tackle image annotation. Instead of building classifiers to learn individual labels exclusively, we model images with parametric mixture models so that the mixture characteristics of labels can be simultaneously exploited in both training and annotation processes. Our proposed method has been benchmarked with several state-of-the-art methods and achieved promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数混合模型的多类多标记图像标注
图像标注通常被认为是一个分类问题,用一组语义术语对图像进行标注,以弥补视觉信息检索中低级特征和高级语义之间的语义差距。由于图像内容丰富,可以与多个概念(即标签)相关联,近年来,多标签分类成为图像标注的研究热点。本文提出了一种基于参数混合模型的多类多标记方法来解决图像标注问题。我们使用参数混合模型对图像进行建模,从而可以在训练和标注过程中同时利用标签的混合特征,而不是构建分类器来单独学习单个标签。我们提出的方法已经与几个最先进的方法进行了基准测试,并取得了可喜的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting doubly compressed JPEG images by using Mode Based First Digit Features Music tracking in audio streams from movies 3-D mesh representation and retrieval using Isomap manifold Adaptive wavelet coding of the depth map for stereoscopic view synthesis Fast encoding algorithms for video coding with adaptive interpolation filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1