A comparative study of classifiers used in facial embedding classification

Sourabh Sarkar, Geeta Sikka
{"title":"A comparative study of classifiers used in facial embedding classification","authors":"Sourabh Sarkar, Geeta Sikka","doi":"10.1109/ICSCCC.2018.8703359","DOIUrl":null,"url":null,"abstract":"Face recognition, recently, has been a fast and effective method of authentication with the advent of deep learning and powerful hardware. This paper investigates different classifiers used in classifying facial embeddings and evaluates their performance. The paper also focuses on an easily deployable pipeline for face recognition using Python which can be used to develop a face recognition system on portable low-power hardware devices. The methodology discussed uses pretrained models and frameworks which results in state-of-the-art performance without the need of any powerful hardware. The proposed methodology achieves an F1 score of 0. 9947with an AUC score of 0.9997 on LFW dataset.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Face recognition, recently, has been a fast and effective method of authentication with the advent of deep learning and powerful hardware. This paper investigates different classifiers used in classifying facial embeddings and evaluates their performance. The paper also focuses on an easily deployable pipeline for face recognition using Python which can be used to develop a face recognition system on portable low-power hardware devices. The methodology discussed uses pretrained models and frameworks which results in state-of-the-art performance without the need of any powerful hardware. The proposed methodology achieves an F1 score of 0. 9947with an AUC score of 0.9997 on LFW dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸嵌入分类中分类器的比较研究
近年来,随着深度学习和强大硬件的出现,人脸识别已经成为一种快速有效的身份验证方法。本文研究了用于人脸嵌入分类的不同分类器,并对其性能进行了评价。本文还重点介绍了一个使用Python的易于部署的人脸识别管道,该管道可用于在便携式低功耗硬件设备上开发人脸识别系统。所讨论的方法使用预训练的模型和框架,从而在不需要任何强大硬件的情况下获得最先进的性能。该方法的F1得分为0。9947,在LFW数据集上AUC得分为0.9997。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To Alleviate The Flooding Attack and Intensify Efficiency in MANET Deep Leaming Approaches for Brain Tumor Segmentation: A Review Q-AODV: A Flood control Ad-Hoc on Demand Distance Vector Routing Protocol Sentimental Analysis On Social Feeds to Predict the Elections A Comparative study of various Video Tampering detection methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1