Power distribution fault diagnostic method based on machine learning technique

K. Moloi, A. Akumu
{"title":"Power distribution fault diagnostic method based on machine learning technique","authors":"K. Moloi, A. Akumu","doi":"10.1109/PowerAfrica.2019.8928633","DOIUrl":null,"url":null,"abstract":"Fault detection, classification and estimation in power systems is one of the most critical aspects of the engineering society. This goes beyond engineering factors to economic implications. Thus, proper applications of protection schemes are required to minimize the equipment damage resulting from a fault. This paper presents a method which tries to proactively detect, classify and estimate the position of the fault. A simplified two bus 132 kV system is modelled to study the effect of the proposed fault diagnostic method. The proposed method has a fault feature extraction technique done by stationary wavelet transform (SWT) on the fault signal. Relevance Vector Machine (RVM) and Support vector machine (SVM) schemes are applied for fault classification and detection. Fault location along the distribution line is achieved by using Support Vector Regression (SVR). The proposed method comprises of SWT-RVM and SVR schemes and tested using MATLAB.","PeriodicalId":308661,"journal":{"name":"2019 IEEE PES/IAS PowerAfrica","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica.2019.8928633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Fault detection, classification and estimation in power systems is one of the most critical aspects of the engineering society. This goes beyond engineering factors to economic implications. Thus, proper applications of protection schemes are required to minimize the equipment damage resulting from a fault. This paper presents a method which tries to proactively detect, classify and estimate the position of the fault. A simplified two bus 132 kV system is modelled to study the effect of the proposed fault diagnostic method. The proposed method has a fault feature extraction technique done by stationary wavelet transform (SWT) on the fault signal. Relevance Vector Machine (RVM) and Support vector machine (SVM) schemes are applied for fault classification and detection. Fault location along the distribution line is achieved by using Support Vector Regression (SVR). The proposed method comprises of SWT-RVM and SVR schemes and tested using MATLAB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习技术的配电故障诊断方法
电力系统的故障检测、分类和估计是工程社会中最重要的方面之一。这不仅涉及工程因素,还涉及经济影响。因此,需要适当的保护方案,以尽量减少故障对设备的损害。本文提出了一种主动检测、主动分类和主动估计故障位置的方法。以一个简化的双母线132 kV系统为例,研究了所提出的故障诊断方法的效果。该方法采用平稳小波变换(SWT)对故障信号进行特征提取。采用相关向量机(RVM)和支持向量机(SVM)方案进行故障分类和检测。利用支持向量回归(SVR)实现配电线路沿线故障定位。该方法包括SWT-RVM和SVR两种方案,并在MATLAB中进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling, Analysis of Current Trajectories of a Nine Phase Induction Machine for Regenerative Capabilities A Model Algorithm for Smart Power Supply and Distribution in Residential Building REPLAN: Multi-Region Power System Planning Approach for Nigeria Eddy current losses computation in conductives materials: case of Aluminum and Permanent Magnet-Part I: Frequency and current effects Performance Analysis of Fuzzy Logic Maximum Power Point Tracking Scheme for Solar PV System Under Varying Load and Atmospheric Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1