{"title":"Dimensionality Reduction for Anomaly Detection in Electrocardiography: A Manifold Approach","authors":"Zhinan Li, Wenyao Xu, A. Huang, M. Sarrafzadeh","doi":"10.1109/BSN.2012.12","DOIUrl":null,"url":null,"abstract":"ECG analysis is universal and important in miscellaneous medical applications. However, high computation complexity is a problem which has been shown in several levels of conventional data mining algorithms for ECG analysis. In this paper, we presented a novel manifold approach to visualize and analyze the ECG signal. According to regularity of the data, our algorithm can discover the intrinsic structure and represent the streaming data with a 1-D manifold on a 2-D space. Furthermore, the proposed algorithm can reliably detect the anomaly in ECG streaming data. We evaluated the performance of the algorithm with two different anomalies in wearable applications: for the anomaly from heart disorders such as apnea, arrythmia, our algorithm could achieve up to 90% recognition rate, for the anomaly from the ECG device, our algorithm could detect the outlier with 100%.","PeriodicalId":101720,"journal":{"name":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2012.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
ECG analysis is universal and important in miscellaneous medical applications. However, high computation complexity is a problem which has been shown in several levels of conventional data mining algorithms for ECG analysis. In this paper, we presented a novel manifold approach to visualize and analyze the ECG signal. According to regularity of the data, our algorithm can discover the intrinsic structure and represent the streaming data with a 1-D manifold on a 2-D space. Furthermore, the proposed algorithm can reliably detect the anomaly in ECG streaming data. We evaluated the performance of the algorithm with two different anomalies in wearable applications: for the anomaly from heart disorders such as apnea, arrythmia, our algorithm could achieve up to 90% recognition rate, for the anomaly from the ECG device, our algorithm could detect the outlier with 100%.